首页 | 本学科首页   官方微博 | 高级检索  
     

基于胶囊网络的恒星光谱分类研究
引用本文:杜利婷,洪丽华,杨锦涛,许婷婷,张静敏,艾霖嫔,周卫红. 基于胶囊网络的恒星光谱分类研究[J]. 天文学报, 2021, 62(1): 8-95
作者姓名:杜利婷  洪丽华  杨锦涛  许婷婷  张静敏  艾霖嫔  周卫红
作者单位:云南民族大学数学与计算机科学学院 昆明 650500;厦门软件职业技术学院软件工程系 厦门 361000;广州大学天体物理中心 广州 510006;云南民族大学数学与计算机科学学院 昆明 650500;中国科学院天体结构与演化重点实验室 昆明 650011
基金项目:国家自然科学基金项目(61561053), 云南民族大学数学与计算机科学学院研究生科研项目(SJXY 2020-103、SJXY2020-101)资助
摘    要:大型巡天项目的快速发展,产生大量的恒星光谱数据,也使得实现恒星光谱数据的自动分类成为一项具有挑战性的工作.提出一种新的基于胶囊网络的恒星光谱分类方法,首先利用1维卷积网络和短时傅里叶变换将来源于LAMOST(Large Sky Area Multi-Object Fiber Spectroscopy Telescope)Data Release 5(DR5)的F5、G5、K5型1维恒星光谱转化成2维傅里叶谱图像,再通过胶囊网络对2维谱图像进行自动分类.由于胶囊网络具有保留图像中实体之间的分层位姿关系和无需池化层的优点,实验结果表明:胶囊网络具有较好的分类性能,对于F5、G5、K5型恒星光谱的分类,准确率优于其他分类方法.

关 键 词:恒星:基本参数  方法:数据分析  技术:光谱分析
收稿时间:2020-06-26

Stellar Spectral Classification Based on Capsule Network
DU Li-ting,HONG Li-hu,YANG Jin-tao,XU Ting-ting,ZHANG Jing-min,AI Lin-pin,ZHOU Wei-hong. Stellar Spectral Classification Based on Capsule Network[J]. Acta Astronomica Sinica, 2021, 62(1): 8-95
Authors:DU Li-ting  HONG Li-hu  YANG Jin-tao  XU Ting-ting  ZHANG Jing-min  AI Lin-pin  ZHOU Wei-hong
Affiliation:School of Mathematics and Computer Science, Yunnan Minzu University, Kunming 650500;School of Software Engineering, Xiamen Institute of Software Technology, Xiamen 361000;Center for Astrophysics, Guangzhou University, Guangzhou 510006; School of Mathematics and Computer Science, Yunnan Minzu University, Kunming 650500;Key Laboratory of the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming 650011
Abstract:The rapid development of large scale sky survey project has produced a large amount of stellar spectral data, which makes the automatic classification of stellar spectral data a challenging task. We select F5, G5, and K5 types of spectra data, which are derived from LAMOST Data Release 5 (DR5), one dimensional convolution network and short-time Fourier transform (STFT) are used to transform the one-dimensional spectra data into two-dimensional Fourier spectrum images. And then the two-dimensional Fourier spectrum images are classified automatically by the capsule network. Because the capsule network preserves the hierarchical pose relationships between the entities in the image and the advantages of removing the pooled layers, the experimental results show that for the classification accuracy of F5, G5, and K5 stellar spectra, capsule Network has better classification performance and is superior to other classification methods.
Keywords:stars: fundamental parameters   methods: data analysis   techniques: spectral analysis
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《天文学报》浏览原始摘要信息
点击此处可从《天文学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号