首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A fully coupled numerical modeling to investigate the role of rock thermo-mechanical properties on reservoir uplifting in steam assisted gravity drainage
Authors:Seyed Erfan Saberhosseini  Reza Keshavarzi  Kaveh Ahangari
Institution:1.Department of Petroleum Engineering, South Tehran Branch,Islamic Azad University,Tehran,Iran;2.Department of Civil and Environmental Engineering,University of Alberta,Alberta,Canada;3.Department of Mining Engineering, Science and Research Branch,Islamic Azad University,Tehran,Iran
Abstract:One of the crucial consequences of steam assisted gravity drainage (SAGD) process is abnormal reservoir uplifting under thermal steam injection, which can significantly influence the reservoir rock deformation, specifically thin bed reservoirs and causes intensive failures and fractures into the cap rock formations. A thorough understanding of the influences of rock thermo-mechanical properties on reservoir uplifting plays an important role in preventing those aforementioned failures within design and optimization process in SAGD. In addition, coupling of reservoir porous medium and flowing of specific fluid with temperature as an additional degree of freedom with initial pore pressure and in-situ stress condition, are also very challenging parts of geomechanical coupled simulation which would be clearly explained. Thus, a fully coupled thermo-poro-elastic geomechanical model with finite element codes was performed in ABAQUS to investigate the role of rock thermo-mechanical parameters on reservoir vertical uplift during steam injection. It is clearly observed that, any increase in rock thermo-mechanical properties specifically rock’s thermal properties such as specific heat, thermal expansion, and formation’s thermal conductivity, have significant influences on reservoir uplift. So by coupling the temperature as an additional degree of freedom with the coupled pore-fluid stress and diffusion finite element model of SAGD process, the more realistic simulation will be conducted; hence, the errors related to not having heat as an additional degree of freedom will be diminished. In addition, Young’s modulus and specific heat are the rock thermo-mechanical parameters which have the maximum and minimum effects on the reservoir uplift, respectively.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号