首页 | 本学科首页   官方微博 | 高级检索  
     


Understanding the redshift evolution of the luminosity functions of Lyman α emitters
Authors:Saumyadip Samui  Raghunathan Srianand   Kandaswamy Subramanian
Affiliation:IUCAA, Post Bag 4, Ganeshkhind, Pune 411 007, India
Abstract:We present a semi-analytical model of star formation which explains simultaneously the observed ultraviolet (UV) luminosity function (LF) of high-redshift Lyman break galaxies (LBGs) and LFs of Lyman α emitters. We consider both models that use the Press–Schechter (PS) and Sheth–Tormen (ST) halo mass functions to calculate the abundances of dark matter haloes. The Lyman α LFs at   z ≲ 4  are well reproduced with only ≲10 per cent of the LBGs emitting Lyman α lines with rest equivalent width greater than the limiting equivalent width of the narrow band surveys. However, the observed LF at   z > 5  can be reproduced only when we assume that nearly all LBGs are Lyman α emitters. Thus, it appears that  4 < z < 5  marks the epoch when a clear change occurs in the physical properties of the high-redshift galaxies. As Lyman α escape depends on dust and gas kinematics of the interstellar medium (ISM), this could mean that on an average the ISM at   z > 5  could be less dusty, more clumpy and having more complex velocity field. All of these will enable easier escape of the Lyman α photons. At   z > 5  , the observed Lyman α LF are well reproduced with the evolution in the halo mass function along with very minor evolution in the physical properties of high-redshift galaxies. In particular, up to   z = 6.5  , we do not see the effect of evolving intergalactic medium opacity on the Lyman α escape from these galaxies.
Keywords:galaxies: formation    galaxies: high-redshift    galaxies: luminosity function, mass function    cosmology: theory    early Universe
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号