首页 | 本学科首页   官方微博 | 高级检索  
     


The 2003 Mw 7.2 Fiordland subduction earthquake, New Zealand: aftershock distribution, main shock fault plane and static stress changes on the overlying Alpine Fault
Authors:Peter McGinty    Russell Robinson
Affiliation:GNS Science, PO Box 30368;Lower Hut, New Zealand. E-mail:
Abstract:The 2003 August 21 Fiordland earthquake ( M L7.0, M W7.2) was the largest earthquake to occur in New Zealand for 35 yr and the fifth of M6+ associated with shallow subduction in Fiordland in the last 15 yr. The aftershocks are diffuse and do not distinguish between the two possible main shock fault planes implied by the Harvard CMT solution, one corresponding to subduction interface thrusting and the other corresponding to steeply seaward dipping thrusting. The distinction is important for calculating the induced stress changes on the overlying Alpine Fault which has a history of very large earthquakes, the last possibly in 1717. We have relocated the aftershocks, using data from temporary seismographs in the epicentral region and the double difference technique. We then use the correlation between aftershock hypocentres and regions of positive changes in Coulomb Failure Stress (CFS) due to various candidate main shock fault planes to argue for concentrated slip on the shallow landward dipping subduction interface. Average changes in CFS on the offshore segments of the Alpine Fault are then negative, retarding any future large events. In our models the change in CFS is evaluated on faults of optimal orientation in the regional stress field as determined by inversion of P -wave polarities.
Keywords:aftershocks    Alpine Fault    Fiordland    induced stress    New Zealand    stress inversion
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号