首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Modeling of Rapidly Rotating Thermal Convection Using Vorticity and Vector Potential
Authors:Mistr  Zdeněk  Matyska  Ctirad  Yuen  David A
Institution:(1) Department of Geophysics, Faculty of Mathematics and Physics, Charles University, V Holescaronoviccaronkách 2, 180 00 Prague 8, Czech Republic;(2) Department of geology and Geophysics and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55415-1227, USA
Abstract:We have used a numerical scheme based on higher-order finite differences to investigate effects of adiabatic heating and viscous dissipation on 3-D rapidly rotating thermal convection in a Cartesian box with an aspect-ratio of 2otimes2otimes1. Although we omitted coupling with the magnetic field, which can play a key role in the dynamics of the Earth's core, the understanding of non-linear rotating convection including realistic thermodynamic effects is a necessary prerequisite for understanding the full complexity of the Earth's core dynamics. The system of coupled partial differential equations has been solved in terms of the principal variables vorticity ohgr, vector potential A and temperature T. The use of the vector potential A allows the velocity field to be calculated with one spatial differentiation in contrast to the spheroidal and toroidal function approach. The temporal evolution is governed by a coupled time-dependent system consisting of ohgr and T. The equations are discretized in all directions by using an eighth-order, variable spaced scheme. Rayleigh number Ra of 106, Taylor number Ta of 108 and a Prandtl number Pr of 1 have been employed. The dissipation number of the outer core was taken to be 0.2. A stretched grid has been employed in the vertical direction for resolving the thin shear boundary layers at the top and bottom. This vertical resolution corresponds to around 240 regularly spaced points with an eighth-order accuracy. For the regime appropriate to the Earth's outer core, the dimensionless surface temperature T 0 takes a large value, around 4. This large value in the adiabatic heating/cooling term is found to cause stabilization of both the temperature and velocity fields.
Keywords:high Rayleigh number  3-D convection  higher-order finite differences  rotating fluid  finite Prandtl number
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号