首页 | 本学科首页   官方微博 | 高级检索  
     检索      


An Assessment of QuikSCAT Ku-Band Scatterometer Data for Soil Moisture Sensitivity
Abstract: The QuikSCAT enhanced (2.225-km) backscattering product is investigated for sensitivity to changes in soil moisture and its potential for spatial disaggregation of Advanced Microwave Scanning Radiometer (AMSR-E) soil moisture. Specifically, an active–passive methodology based on temporal change detection is tested using data from the 2006 National Airborne Field Experiment data set. This campaign was carried out from October 29 to November 20, 2006 in a 60 km $times$ 40 km area of the Murrumbidgee catchment, southeast Australia. Temporal change detection analysis and accuracy in terms of spatial pattern distribution throughout the domain were assessed using a passive microwave airborne product derived from the Polarimetric L-band Multibeam Radiometer at 1-km spatial resolution. QuikSCAT–AMSR-E intercomparisons indicated higher correlations when using C-band observations. The greatest sensitivity to soil moisture was observed when using V-polarized backscatter measurement. While backscattering data showed adequate temporal sensitivity to changes in soil moisture due to precipitation events, the spatial agreement was complicated by the presence of irrigation and standing water (rice fields). This resulted in low Cramer's Phi values (less than 0.06), which were used as a measure of spatial correspondence in terms of change in soil moisture and backscatter. In addition, the high QuikSCAT sensor frequency and existence of noise in the observed data contributed to the observed discrepancies.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号