首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Asteroidal agglutinate formation and implications for asteroidal surfaces
Authors:Friedrich Hörz  Rand B Schaal
Institution:Geology Branch, NASA Johnson Space Center, Houston, Texas 77058, USA;Lockheed Engineering and Management Services Company, Inc., Houston, Texas 77058, USA
Abstract:A large number of shock recovery experiments that address the ease of impact melt formation as a function of peak shock pressure lead to the conclusion that impacts at 5 km/sec into fragmental, porous surfaces will produce agglutinate-type glasses; no shock melts are produced at these velocities in dense silicate target rocks. While agglutinitic glasses dominate lunar surface soils, they are virtually absent in gas-rich, brecciated meteorites. This apparent paucity—if not complete lack—of agglutinate-type glasses is also inferred from remote IR-reflectance spectroscopy. The need to identify mechanisms that inhibit agglutinate formation on asteroidal sufaces was recognized previously and was predominantly attributed to lower projectile velocities and different gravitational environments.We will argue in this paper that additional mechanisms may be required. Specifically we propose that spall processes at a target's free surface play a major role in asteroidal surface evolution. At 5 km/sec collision velocity, a target (RT) to projectile (RP radius ratio of RTRP ≈ 100 delineates the boundary between an “infinite half-space” and a “finite”-sized target. In the first case, collisional energy is expended in a pure cratering regime; in the latter, additional displacement of target material in the form of spallation products occurs. The spall volume may exceed the crater volume by an order of magnitude. Therefore fragmental impact deposits on small planetary bodies may be entirely controlled by spall products, rather than crater ejecta. Because tensile failure occurs at <0.2 GPa stress, spall velocities are measured in meters per second (contrary to crater ejecta) and therefore spallation products are efficiently retained even in low gravitational environments. Spall products are also more coarse grained than crater ejecta; they are also highly biased toward petrographically “unshocked” (<0.2 GPa) rocks.Thus asteroidal surface deposits should be more coarse grained and less shocked than lunar ones—consistent with meteorite evidence and remote-sensing observations. Because spall volume exceeds crater ejecta volume, the total growth rate of asteroidal surface deposits is accelerated, leading to relatively short surface residence times of individual meteorite components, another significant difference between lunar and asteroidal surface materials.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号