首页 | 本学科首页   官方微博 | 高级检索  
     

华北地区持续性极端暴雨过程的分类特征
引用本文:周璇,孙继松,张琳娜,陈官军,曹洁,纪彬. 华北地区持续性极端暴雨过程的分类特征[J]. 气象学报, 2020, 78(5): 761-777. DOI: 10.11676/qxxb2020.052
作者姓名:周璇  孙继松  张琳娜  陈官军  曹洁  纪彬
作者单位:1.中国气象科学研究院灾害天气国家重点实验室,北京, 100081
基金项目:国家科技支撑计划项目(2015BAC03B04)、国家重点研发计划项目(2018YFC1507200)、国家自然科学基金面上项目(41875074)、中国气象局预报员专项(CMAYBY2019-003)、北京市气象局科技项目(BMBKJ201703003)
摘    要:利用1960—2015年日降水资料,筛选出华北地区56次持续性极端暴雨过程。基于距平相关系数的客观聚类分析方法和天气学检验,将它们进行分类,并使用NCEP(2.5°×2.5°)再分析资料进行分类合成,对比分析不同环流背景下华北地区持续性极端暴雨过程的基本特征。结果表明,这些持续性极端暴雨事件按照环流背景可分为经向型、纬向型、减弱的登陆热带气旋型和初夏型4类。它们一般都与不同天气系统配置结构下的锋面动力学过程有关,由于锋面结构特征、环境大气层结状态以及与低空急流有关的暖湿气流输送通道和强度不同,造成不同环流形势背景下,暴雨日的高频站点与过程平均累计降水量在空间分布上存在差异。(1)纬向型对应的锋区强度明显强于经向型,但是其对应的层结稳定度与整个夏季状态相当,而经向型存在弱的层结不稳定异常,这表明,纬向型的对流活动一般不如经向型强,持续性锋面降水特征更清晰,造成站点上日降水量超过50 mm的最大频率明显低于经向型,但是过程累计平均最大降雨量却比经向型大。(2)从水汽输送通道来看,源于西太平洋副热带高压南侧的水汽通道只在纬向型环流主导下的华北区域持续性极端暴雨过程中起主导作用。初夏型以及减弱...

关 键 词:华北地区  持续性极端暴雨  暴雨的环流分型  环流特征
收稿时间:2019-12-06
修稿时间:2020-04-28

Classification characteristics of continuous extreme rainfall events in North China
ZHOU Xuan,SUN Jisong,ZHANG Linn,CHEN Guanjun,CAO Jie and JI Bin. Classification characteristics of continuous extreme rainfall events in North China[J]. Acta Meteorologica Sinica, 2020, 78(5): 761-777. DOI: 10.11676/qxxb2020.052
Authors:ZHOU Xuan  SUN Jisong  ZHANG Linn  CHEN Guanjun  CAO Jie  JI Bin
Affiliation:1.State Key Laboratory of Server Weather,Chinese Academy of Meteorological Sciences,Beijing 100081,China2.Beijing Weather Forecast Center,Beijing 100089,China3.The Chinese People's Liberation Army 96941,Beijing 102206,China4.Laboratory of Cloud-Precipitation Physics and Severe Storms,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China
Abstract:Based on daily precipitation data provided by China Meteorological Administration for the period 1960—2015, 56 continuous extreme rainfall events in North China were filtered. Using the objective cluster analysis method based on the anomaly correlation coefficient and synoptic appraisal, these events were classified. Furthermore, the NCEP reanalysis data (2.5°×2.5°) was used to classify and synthesize the synoptic characteristics. Results show that the patterns of continuous extreme rainfall events in North China include warp-wise type, across-warp type, weakened landfalling tropical cyclone type and early summer type. The four types are generally related to the frontal dynamics process under different weather configurations. However, due to differences in the frontal structural features, the environmental atmospheric stratification state and the warm and humid transport channels associated with low-level jets, the spatial distributions of meteorological stations with high-frequency of daily precipitation ≥50 mm and the average cumulative precipitation show different patterns. (1) The intensity of the frontal zone corresponding to the continuous extreme rainfall event of across-warp type is significantly stronger than that corresponding to the event of warp-wise type. However, the stratification stability for the across-warp type is similar to the climate state of summer, while there is a weak-instability anomaly in the warp-wise type. As a result, the convective activity in the continuous extreme rainfall event of across-warp type is generally less violent than that of warp-wise type, and it exhibits a clearer frontal precipitation characteristics with continuous rainfall, that is, the frequency of daily precipitation ≥50 mm in the across-warp type is significantly lower than that in the warp-wise, while the across-warp type has more cumulative precipitation. (2) The water vapor transport channel, which was derived from the south side of the Western Pacific Subtropical High, only plays a leading role in the across-warp type. In the early summer type and weakened landfalling tropical cyclone type, the active Indian monsoon causes a strong low-level zonal southwesterly airflow anomaly to the south of 25°N, which becomes the main source of water vapor after passing through the Indo-China Peninsula or is "transferred" by tropical cyclone. In addition, the water vapor transport of the warp-wise type is also related to the westerly airflow anomaly originating from the south side of the Qinghai-Tibet Plateau. This factor might be the main reason why the summer precipitation in North China has a higher correlation with the Indian monsoon precipitation than that in other parts of eastern China. (3) Similar to the warp-wise type, the weakened landfalling tropical cyclone type is also dominated by meridional atmospheric circulation. However, as a result of more water vapor transport, greater vertical velocity and deeper unstable atmospheric state, the precipitation intensity of the tropical cyclone type is more concentrated. In addition, for the extreme rainfall events located at the northern ridge of weakened landfalling tropical cyclones, the invasion of weak cold air from higher altitudes is significantly effective. 
Keywords:North China  Continuous extreme rainfall events  Classification  Atmospheric circulation characteristics
点击此处可从《气象学报》浏览原始摘要信息
点击此处可从《气象学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号