首页 | 本学科首页   官方微博 | 高级检索  
     

基于重磁数据梯度比值的深度学习技术实现场源位置反演方法
引用本文:马国庆,吴琪,熊盛青,李丽丽. 基于重磁数据梯度比值的深度学习技术实现场源位置反演方法[J]. 地球科学, 2021, 46(9): 3365-3375. DOI: 10.3799/dqkx.2020.350
作者姓名:马国庆  吴琪  熊盛青  李丽丽
作者单位:1.吉林大学地球探测科学与技术学院, 吉林长春 130026
基金项目:"十三五"国家重点研发计划项目2017YFC0601606
摘    要:场源中心位置的计算是重磁数据反演的主要任务之一,现主要通过异常与场源位置之间的数学物理方程来估算地质体的位置.为了快速、准确获得地质体的位置信息,提出基于重磁梯度比值的深度学习技术实现场源位置的获取;其利用深度学习技术所建立的重磁梯度比值水平分布与地质体埋深、构造指数的关系,快速实现异常场源位置计算,且提出利用多个值的...

关 键 词:重磁场源  中心位置  比值  深度学习  地球物理
收稿时间:2020-08-13

Ratio Method for Calculating the Source Location of Gravity and Magnetic Anomalies Based on Deep Learning
Ma Guoqing,Wu Qi,Xiong Shengqing,Li Lili. Ratio Method for Calculating the Source Location of Gravity and Magnetic Anomalies Based on Deep Learning[J]. Earth Science-Journal of China University of Geosciences, 2021, 46(9): 3365-3375. DOI: 10.3799/dqkx.2020.350
Authors:Ma Guoqing  Wu Qi  Xiong Shengqing  Li Lili
Abstract:The location of field source's center is one important purpose in the inversion of gravity and magnetic data, and the location of geological body is estimated mainly through the linear equation between the anomaly and the location of the field source. In order to obtain the location accurately and quickly, a deep learning technique based on the ratio of gravity and magnetic gradient is proposed to achieve the acquisition of the field source location in this paper, which can calculate the field source location quickly by using the deep learning technique to learn the relationship between the horizontal distribution of the gravity and magnetic gradient ratio, the buried depth, and the index. It is also proposed to use the mutual relationship of multiple values to calculate the information of the geological body more accurately and stably. This method can calculate the center location of complex geological bodies, and avoid the complicated process of screening the results of the previous methods, using the deep learning method of analytic signal for magnetic anomaly with remanent magnetism to achieve the location inversion. The application effect of the method is tested by theoretical models, which shows that the proposed method can obtain the depth information of the geological body accurately. Comparing the calculation results of the deep learning of more points, it is found that the use of multiple extreme points of different proportions can reduce the interference by noise and can get a location more accurately, so the method has good practicability. 
Keywords:
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《地球科学》浏览原始摘要信息
点击此处可从《地球科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号