首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Terrestrial Kr-Kr ages of Antarctic meteorites
Authors:M Freundel  L Schultz  R C Reedy
Institution:

Max-Planck-Institut für Chemie, D-65, Mainz, F.R.G.

Abstract:The production rate of 38Ar in meteorites—P(38)—has been determined, as a function of the sample's chemical composition, from 81Kr-Kr exposure ages of four eucrite falls. The cosmogenic 78Kr/83Kr ratio is used to estimate the shielding dependence of P(38).

From the “true” 38Ar exposure ages and the apparent 81Kr-Kr exposure ages of nine Antarctic eucrite finds, terrestrial ages are calculated. They range from about 3 × 105 a (Pecora Escarpment 82502) to very recent falls (Thiel Mountains 82502). Polymict eucrites from the Allan Hills (A78132, A79017 and A81009) have within the limits of error the same exposure age (15.2 × 106 a) and the same terrestrial age (1.1 × 105 a). This is taken as strong evidence that these meteorites are fragments of the same fall. A similar case are the Elephant Moraine polymict eucrites A79005, A79006 and 82600 with an exposure age of 26 × 106 a and a terrestrial age of 1.8 × 105 a. EETA79004 may be different from this group because its exposure age and terrestrial age are 21 × 106 a and 2.5 × 105 a, respectively.

The distribution of terrestrial ages of Allan Hills meteorites is discussed. Meteorites from this blue ice field have two sources: Directly deposited falls and meteorites transported to the Allan Hills inside the moving Antarctic ice sheet. During the surface residence time meteorites decompose due to weathering processes. The weathering “half-life” is about 1.6 × 105 a. From the different age distributions of Allan Hills and Yamato meteorites, it is concluded that meteorite concentrations of different Antarctic ice fields need different explanations.

Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号