首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Non-equilibrium alcohol flooding model for immiscible phase remediation: 2. Model development and application
Authors:Stanley Reitsma  Bernard H Kueper
Institution:Department of Civil Engineering, Queen's University, Kingston, Ontario, Canada K7L 3N6
Abstract:A non-equilibrium, two-phase, three-component compositional model for the simulation of alcohol flooding has been developed and tested. Inter-phase mass transfer algorithms allow for transfer of all three components at high concentrations and high mass flux rates using a two-film model. The model has been used to simulate alcohol floods where the alcohol has an affinity for either the water-rich phase, or the organic-rich phase. Calibration, using experimental effluent data from an alcohol flood which used a 2-propanol (IPA)-water-tetrachlorethene (PCE) ternary system, indicates that inter-phase mass transfer parameters can be non-unique. Sensitivity studies, completed using the non-equilibrium model for the IPA-water-PCE system, indicate that experimentally derived organic-rich phase composition data should lead to better estimates of the non-wetting phase film thickness. For alcohol flooding experiments where the primary mechanism of non-aqueous phase liquid (NAPL) removal is enhanced dissolution, near-equilibrium conditions may be achieved with NAPL recovery similar for conditions of near-equilibrium and equilibrium. However, for systems where remobilization is the primary mechanism of NAPL recovery, it is expected that although local conditions may approach equilibrium, the resulting NAPL recovery can be significantly lower than would be attained if equilibrium conditions persisted.
Keywords:alcohol flooding  non-equilibrium  multicomponent  mass transfer  DNAPL  compositional  remediation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号