首页 | 本学科首页   官方微博 | 高级检索  
     

基于主组分分析的概率神经网络损伤定位研究
引用本文:姜绍飞,杨晓楠,陈兆才,倪一清,高赞明. 基于主组分分析的概率神经网络损伤定位研究[J]. 地震工程与工程振动, 2004, 24(2): 187-191
作者姓名:姜绍飞  杨晓楠  陈兆才  倪一清  高赞明
作者单位:沈阳建筑工程学院,土木学院,辽宁,沈阳,110168;香港理工大学,土木与结构工程系,香港,九龙
基金项目:国家"十五"科技攻关(2002BA806B 4),建设部科技项目,教育部留学回国基金,辽宁省自然科学基金,香港RGC项目
摘    要:概率神经网络(PNN)以贝叶斯概率的方法描述测量数据,因而PNN在有噪声条件下的结构损伤检测方面具有巨大潜力。与此同时,PNN的网络规模随着训练样本的增加而增大,这极大地降低了网络运行速度。基于此,本文提出了基于主组分分析(PCA)的PNN损伤定位方法,分别用传统PNN(TPNN)、主组分分析PNN(PCAPNN)和自适应PNN(APNN)三种模型进行了悬索桥的损伤定位研究。研究发现,APNN的识别精度最好,PCAPNN次之,TPNN最差。但APNN需要很长的训练时间,网络规模较大;其他两个网络几乎不需要训练时间,且PCAPNN网络规模较其他两个网络减少了1/3~1/4。在低噪声情况下,PCAPNN的识别效果基本上等同于APNN。

关 键 词:复杂工程结构  损伤定位  概率神经网络  噪声程度  主组分分析
文章编号:1000-1301(2004)02-0187-05

Research on damage localization of principal component analysis-based probabilistic neural network
JIANG Shao-fei. Research on damage localization of principal component analysis-based probabilistic neural network[J]. Earthquake Engineering and Engineering Vibration, 2004, 24(2): 187-191
Authors:JIANG Shao-fei
Affiliation:JIANG Shao-fei~
Abstract:As the probabilistic neural network (PNN) describes measurement data in a Bayesian probabilistic approach, it shows great potential for structural damage detection in noisy conditions. Meanwhile, the size of PNN increases as the learning samples increase. This reduces the running velocity. Based on this, a damage localization method called PNN is proposed based on principal component analysis in this paper. Three PNN models, namely, the traditional PNN (TPNN),the principal component analysis PNN (PCAPNN) and the adaptive PNN (APNN) models are utilized to detect the damage location of a suspension bridge respectively. This study shows that the (identification) accuracy (IA) of damage localization using the APNN is the best, the IA using the TPNN is the worst , and the IA using the PCAPNN is between the former two models.But the training time using the APNN is very long,and the size of the model is relatively large. Meanwhile, the others hardly need time to train the PNN models, and the size of PCAPNN reduces to that of other two models from 1/3 to 1/4. Furthermore, in low noise level, the IA using PCAPNN is almost the same as the APNN.
Keywords:Complex engineering structure  damage location  probabilistic neural network  noise level  principal component analysis
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号