首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Shoaling Surface Gravity Waves Cause a Force and a Torque on the Bottom
Authors:Kern E Kenyon
Institution:(1) 4632 North Lane, Del Mar, CA, 92014-4134, U.S.A.
Abstract:Freely propagating surface gravity waves are observed to slow down and to stop at a beach when the bottom has a relatively gentle upward slope toward the shore and the frequency range of the waves covers the most energetic wind waves (sea and swell). Essentially no wave reflection can be seen and the measured reflected energy is very small compared to that transmitted shoreward. One consequence of this is that the flux of the wave’s linear momentum decreases in the direction of wave propagation, which is equivalent to a time rate of change of the momentum. It takes a force to cause the time rate of change of the momentum. Therefore, the bottom exerts a force on the waves in order to decrease the momentum flux. By Newton’s third law (action equals reaction) the waves then impart an equal but opposite force to the bottom. In shallow (but finite) water depths the wave force per unit bottom area is calculated, for normal angle of incidence to the beach, to be directly proportional to the square of the wave amplitude and to the bottom slope and inversely proportional to the mean depth; it is independent of the wave frequency. Constants of proportionality are: 1/4, the fluid density and the acceleration of gravity. Swell attenuation near coasts and some characteristics of sand movement in the near-shore region are not inconsistent with the algebraic structure of the wave force formula. Since the force has a depth variation which is significantly faster than that of the dimensions of the particle orbits in the vertical direction, the bottom induces a torque on the fluid particles that decreases the angular momentum flux of the waves. By an extension of Newton’s third law, the waves also exert an equal but opposite torque on the bottom. And because the bottom force on the waves exists over a horizontal distance, it does work on the waves and decreases their energy flux. Thus, theoretically, the fluxes of energy, angular and linear momentum are not conserved for shoaling surface gravity waves. Mass flux, associated with the Stokes drift, is assumed to be conserved, and the wave frequency is constant for a steady medium.
Keywords:Shoaling waves  wave force  wave torque
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号