首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Zonal winds near Venus' cloud top level: A model study of the interaction between the zonal mean circulation and the semidiurnal tide
Institution:1. Department of Civil, Environmental and Infrastructure Engineering, George Mason University, 4400 University Drive, MS 6C1, Fairfax, VA 22030, USA;2. Department of Civil and Environmental Engineering, Virginia Tech, 750 Drillfield Drive, 221E Patton Hall, Blacksburg, VA 24061, USA;3. Department of Civil Engineering, Texas A&M University, 3136 TAMU, College Station, TX 77843-3136, USA
Abstract:A primitive equation wave-mean flow interaction model, designed by J. R. Holton and used originally to study Earth's middle atmosphere, has been adapted to Venus in order to clarify our understanding of the interaction between the semidiurnal tide and the thermally driven mean meridional circulation near the cloud top level. With or without the tide the model produces midlatitude jets whose structure is insensitive to vertical shear of the background angular velocity above and below the cloud top level, but it is sensitive to background angular velocity at the cloud top level. When this background angular velocity is close to that of Venus, the latitudes and speeds of these jets are similar to the latitudes and speeds of jets at the Venus cloud top level as inferred from observed temperatures and the cyclostrophic balance condition. In agreement with the hypothesis of Fels and Lindzen, the model tide accelerates the equatorial zonal wind near the cloud top level and decelerates it at higher levels. The tidal vertical wavelength, maximum amplitude, dissipative decay length, and zonal flow accelerations are sensitive functions of background angular velocity, in agreement with elementary gravity wave theory. In the equatorial cloud top region, tidal acceleration is comparable in magnitude to the decelerative effects of vertical advection and the model's Rayleigh friction damping. For sufficiently rapid initial zonal flow near the cloud top level, the area-weighted global mean cloud top level zonal wind increases with time over a 50-day model run as a result of tidal acceleration. Agreement between the model tide and the observed tide, or the tide determined in the more detailed calculations of Pechmann and Ingersoll, is best when the background angular velocity at the jet level is about 30% larger than that observed.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号