首页 | 本学科首页   官方微博 | 高级检索  
     


Rare earth element transport in the western North Atlantic inferred from Nd isotopic observations
Affiliation:1. GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24148 Kiel, Germany;2. AARI, Arctic and Antarctic Research Institute, ul. Beringa 38, Saint Petersburg, Russia;3. Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288 Marseille, France;4. Saint Petersburg State University, 7/9 Universitetskaya Emb., 199034 Saint Petersburg, Russia;5. Max Planck Research Group for Marine Isotope Geochemistry, Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
Abstract:The isotopic composition of Nd in the water column from several western North Atlantic sites and formational areas for North Atlantic Deep Water shows extensive vertical structure at all locations. In regions where a thermocline is well-developed, large isotopic shifts (2 to 3 ϵ units) are observed across the base of the thermocline. Regions without a thermocline are characterized by much more gradual shifts in isotopic composition with depth. In general, the data reveal an excellent correlation between the Nd isotopic distribution in the western North Atlantic water column and the distribution of water masses identified from temperature and salinity characteristics. NADW, as identified from T-S properties, is also characterized by a well-defined isotopic composition having ϵNd(0) = −13.5 ± 0.5. This signature is associated with waters identified as NADW from high latitudes near formational areas in the Labrador Sea down to the equatorial region. The isotopic signature of NADW would appear to be formed by a blend of more negative waters originating in the Labrador Sea (ϵNd(0) < −18) and more positive waters originating in the overflows from the Norwegian and Greenland Seas (ϵNd(0) ≈ −8 to −10) and is consistent with classical theories on the formation of NADW. The isotopic signature of NADW is propagated southward to the equator where it is gradually being thinned out by mixing from above and below with more radiogenic Nd associated with northward-spreading Antarctic Intermediate and Bottom Waters. The preservation of the isotopic signature of NADW over these large distances indicate that the REE undergo extensive lateral transport. The isotopic composition of Nd is largely conservative over the time scales of mixing within the Atlantic in spite of the intrinsic nonconservative behavior of neodymium. Nd concentration gradients generally show surface waters to be depleted in Nd relative to deep waters, which must require vertical transport processes. However, isotopic differences in the water column preclude the local downward transport of REE from the surface into underlying deep waters as a simple explanation of the concentration gradient. The apparent decoupling of REE in NADW from overlying (local) surface waters and the increasing concentration with depth provide a conflict with simple vertical transport mechanisms that is not yet resolved.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号