首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Nucleation on perthite-perthite boundaries and exsolution mechanisms in alkali feldspars
Authors:William L Brown  Ian Parsons
Institution:1. Laboratoire de Pétrologie-Géochimie, Université Nancy I, B.P. 239, 54506, Vandoeuvre-lès-Nancy Cédex, France
2. Department of Geology and Mineralogy, Marischal College, University of Aberdeen, AB9 1AS, Aberdeen, Scotland UK
Abstract:A transmission electron microscope study of intracrystalline boundaries between two perthites of markedly different composition in composite crystals, one a tenary mesoperthite (Or26Ab52An22, initially a homogeneous potassian monalbite) the other a more potassic cryptoperthite (Or61Ab33An6, initially a homogeneous sodian sanidine), shows that the two perthites are in nearly parallel intergrowth. Most boundaries examined were of (hkO) type; (010) boundaries are straight, whereas other (hkO) boundaries are curved or stepped. Exsolution occurred first in the potassian monalbite (mesoperthite) and was unaffected by the boundary. Subsequent exsolution in the sodian sanidine (cryptoperthite) was affected by the boundary, but for up to only a few micrometers. Exsolution occurred by heterogeneous nucleation and growth of oligoclase on and from the intracrystalline boundary. At almost the same time the rest of the volume of sanidine exsolved by spinodal decomposition. 1–2 μm from the boundary in the intervening K-rich matrix of the sodian sanidine, further exsolution occurred by homogeneous nucleation. Time — temperature — transition curves for continuous cooling have been devised to account for the unusual complexity of the exsolution texture. Except in such exceptional circumstances as the example studied, the initial exsolution in high-temperature alkali feldspars of intermediate composition, unlike other minerals, probably does not occur by nucleation, but only by spinodal decomposition.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号