首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Electronic structures of sulfide minerals — Theory and experiment
Authors:David J Vaughan  John A Tossell
Institution:1. Department of Geological Sciences, University of Aston in Birmingham, B4 7ET, Birmingham, England
2. Department of Chemistry, University of Maryland, 20742, College Park, Maryland, USA
Abstract:The sulfide minerals exhibit a rich diversity in sturctural chemistry and in electrical, magnetic and other physical properties. Models based on molecular orbital theory and incorporating some elements of band theory can be developed to describe the diverse valence electron behavior in these minerals. Qualitative models can be proposed on the basis of observed properties, and the models can be tested and refined using experimental data from X-ray emission and X-ray photoelectron spectroscopy and quantum mechanical calculations performed on cluster units which form the basic building blocks of the crystals. This approach to chemical bonding in sulfide minerals is illustrated for binary non-transition metal sulfides (ZnS, CdS, HgS, PbS), binary transition metal sulfides (FeS2, CoS2, NiS2, CuS2 ZnS2) and more complex sulfides (CuFeS2, Cu2S, Ag2S, CuS, Co3S4, CuCo2S4, Fe3S4). The relationship between qualitative and quantitative theories is reviewed with reference to the pyrite-marcasite-arsenopyrite-loellingite series of minerals. Application of the models to understanding structure-determining principles, relative stabilities, solid solution limits and properties such as color, reflectance and hardness are discussed.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号