首页 | 本学科首页   官方微博 | 高级检索  
     


The Relation Between Humidity and Liquid Water Content in Fog: An Experimental Approach
Authors:Stefan Georg Gonser  Otto Klemm  Frank Griessbaum  Shih-Chieh Chang  Hou-Sen Chu  Yue-Joe Hsia
Affiliation:1. BayCEER, University of Bayreuth, 95440, Bayreuth, Germany
2. Institute of Landscape Ecology, University of Muenster, 48149, Munster, Germany
3. Institute of Natural Resources, National Dong Hwa University, 974, Hualien, Taiwan
Abstract:Microphysical measurements of orographic fog were performed above a montane cloud forest in northeastern Taiwan (Chilan mountain site). The measured parameters include droplet size distribution (DSD), absolute humidity (AH), relative humidity (RH), air temperature, wind speed and direction, visibility, and solar short wave radiation. The scope of this work was to study the short term variations of DSD, temperature, and RH, with a temporal resolution of 3?Hz. The results show that orographic fog is randomly composed of various air volumes that are intrinsically rather homogeneous, but exhibit clear differences between each other with respect to their size, RH, LWC, and DSD. Three general types of air volumes have been identified via the recorded DSD. A statistical analysis of the characteristics of these volumes yielded large variabilities in persistence, RH, and LWC. Further, the data revealed an inverse relation between RH and LWC. In principle, this finding can be explained by the condensational growth theory for droplets containing soluble or insoluble material. Droplets with greater diameters can exist at lower ambient RH than smaller ones. However, condensational growth alone is not capable to explain the large observed differences in DSD and RH because the respective growth speeds are too slow to explain the observed phenomena. Other mechanisms play key roles as well. Possible processes leading to the large observed differences in RH and DSD include turbulence induced collision and coalescence, and heterogeneous mixing. More analyses including fog droplet chemistry and dynamic microphysical modeling are required to further study these processes. To our knowledge, this is the first experimental field observation of the anti-correlation between RH and LWC in fog.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号