首页 | 本学科首页   官方微博 | 高级检索  
     

基于SVM的高耸圆形建筑物沉降数据分析及预报研究
引用本文:杨帆,郭正一,张子文. 基于SVM的高耸圆形建筑物沉降数据分析及预报研究[J]. 测绘工程, 2015, 0(2): 1-5. DOI: 10.3969/j.issn.1006-7949.2015.02.001
作者姓名:杨帆  郭正一  张子文
作者单位:辽宁工程技术大学,辽宁 阜新,123000
基金项目:国家自然科学基金资助项目(50604009);辽宁省“百千人才工程”人选资助项目
摘    要:随着高耸圆形建筑物大量修建,高耸圆形建筑物监测成为防治和减少灾害发生的一项极为重要的工作之一。针对小波降噪的平稳特性、小样本条件下支持向量机机器学习和预测的准确性,建立了高耸圆形建筑物的小波去噪、支持向量机机器学习和预测分析模型。实验表明,不确定性支持向量机的预测结果和学习效果的均方差比遗传算法更小,可即时发现高耸圆形建筑物不均匀下沉或倾斜现象。这种数据处理方法经试验表明可以应用到其他预测方面。

关 键 词:高耸圆形建筑  SVM  小波降噪  沉降监测  沉降预计

Research on settlement data analysis and prediction of the great tall circular buildings based on SVM
YANG Fan,GUO Zheng-yi,ZHANG Zi-wen. Research on settlement data analysis and prediction of the great tall circular buildings based on SVM[J]. Engineering of Surveying and Mapping, 2015, 0(2): 1-5. DOI: 10.3969/j.issn.1006-7949.2015.02.001
Authors:YANG Fan  GUO Zheng-yi  ZHANG Zi-wen
Affiliation:YANG Fan;GUO Zheng-yi;ZHANG Zi-wen;Liaoning Technical University;
Abstract:With more and more great tall circular buildings ,the related monitoring w hich can prevent and reduce the disasters is one of the extremely important work . For the stationary characteristic of the wavelet denoising and the accuracy of support vector machine learning and prediction at the small sample conditions ,a great tall circular buildings analysis model is proposed which uses the wavelet denoising and support vector machine learning and prediction .The experiment indicates that :the mean square error of support vector machine is smaller than the genetic algorithm at the predict outcomes and machine learning effect and can find the unbalance and tilt phenomenon of the great tall circular buildings immediately .The data processing of the test can be applied to other prediction .
Keywords:great tall circular building  SVM  wavelet denoising  subsidence monitoring  subsidence forecast
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号