首页 | 本学科首页   官方微博 | 高级检索  
     

基于快速鲁棒性主成分分析的日冕喷流自动检测方法
引用本文:耿成杰,李润鑫,刘辉,尚振宏. 基于快速鲁棒性主成分分析的日冕喷流自动检测方法[J]. 天文研究与技术, 2022, 0(1)
作者姓名:耿成杰  李润鑫  刘辉  尚振宏
作者单位:昆明理工大学信息工程与自动化学院;昆明理工大学云南省计算机技术应用重点实验室;中国科学院云南天文台;昆明理工大学云南省人工智能重点实验室
基金项目:国家自然科学基金(11873027,12063002);云南省计算机技术应用重点实验室开放基金资助.
摘    要:使用快速鲁棒性主成分分析(Fast Robust Principal Component Analysis,Fast RPCA)方法对日冕序列图像中的日冕喷流活动进行检测。检测的基本思路是利用快速鲁棒性主成分分析方法中低秩和稀疏分解的思想与日冕序列图像中有着变化尺度稍小且占比较大的随机变化背景成分、变化尺度较大且占比较小的日冕喷流的特点相结合,实现随机复杂多变的动态背景和稀疏运动目标之间的分离,从而检出作为前景变化的日冕喷流。采用太阳动力学天文台(Solar Dynamics Observatory,SDO)卫星的大气成像仪(Atmospheric Imaging Assembly,AIA)两组不同时间段、不同波段、不同观测位置的日冕序列图像作为研究对象。研究内容主要包括日冕序列图像的预处理、日冕喷流检测、快速鲁棒性主成分分析方法与帧间差分法的检测结果对比分析。实验结果表明,与帧间差分法相比,快速鲁棒性主成分分析方法能够检出强度较弱的日冕喷流,且提高了日冕喷流检测的准确度。

关 键 词:日冕喷流检测  快速鲁棒性主成分分析  帧间差分  运动目标提取

Coronal Jet Automatic Detection Method Based on Fast Robust Principal Component Analysis
Geng Chengjie,Li Runxin,Liu Hui,Shang Zhenhong. Coronal Jet Automatic Detection Method Based on Fast Robust Principal Component Analysis[J]. Astronomical Research & Technology, 2022, 0(1)
Authors:Geng Chengjie  Li Runxin  Liu Hui  Shang Zhenhong
Affiliation:(Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China;Key Laboratory of Applications of Computer Technology of Yunnan Province, Kunming University of Science and Technology, Kunming 650500, China;Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216, China;Yunnan Key Laboratory of Artificial Intelligence, Kunming University of Science and Technology, Kunming 650500, China)
Abstract:In this paper,fast robust principal component analysis(Fast RPCA)is used to detect coronal jet activity in coronal sequence images.The basic idea of detection is to combine the idea of low rank and sparse decomposition in Fast RPCA method with the characteristics of coronal sequence images,such as the random background component with smaller scale and larger proportion,and the coronal jet with larger scale and smaller proportion,so as to realize the separation between the random and complex dynamic background and sparse moving objects,as well as to detect the coronal jet as the foreground change.Two sets of coronal sequence images of different time periods,different channel and different observation positions from the atmospheric imaging assembly(AIA)observation equipment on the solar dynamics observatory(SDO)satellite are used as the research objects.The main research contents include the preprocessing of coronal image sequence,coronal jet detection,and the comparison analysis of the detection results between Fast RPCA method and running difference method.The experimental results show that compared with the running difference method,the Fast RPCA method can detect the weak coronal jet and improve the accuracy of coronal jet detection.
Keywords:coronal jet detection  fast RPCA  running difference  moving target extraction
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号