摘 要: | 目的:探究基于增强CT纹理分析技术联合机器学习在腮腺腺淋巴瘤与混合瘤鉴别中的应用。方法:回顾性分析40例于本院手术并有完整病理资料的腮腺腺淋巴瘤与混合瘤患者,其中腺淋巴瘤组21例,混合瘤组19例。运用Mazda软件在增强CT静脉期图像上手动勾画病灶最大层面ROI区;应用Fisher系数、POE+ACC、MI及三者联合应用(FPM)的方法,筛选出最佳纹理参数,通过ROC曲线评估其诊断效能;最后采用RDA、PCA和LDA、NDA四种机器学习算法进行分类分析,并分析不同算法的诊断效能。结果:纹理特征参数中腺淋巴瘤组的WavEnHH_s-4、GrVariance、45dgr_Fraction低于混合瘤组,WavEnLL_s-4、GrSkewness高于混合瘤组,且均在组间有统计学意义。ROC曲线显示WavEnLL_s-4的敏感性与特异性较为平衡,AUC值、敏感性、特异性分别为0.797、84.2%、76.2%,具有良好诊断效能;RDA、PCA、LDA、NDA算法的误判率范围分别为30.0%~37.5%、30.0%~37.5%、7.5%~37.5%、5.0%~12.5%,其中误判率最低的是FPM...
|