首页 | 本学科首页   官方微博 | 高级检索  
     


Temporal variations of reference evapotranspiration and controlling factors: Implications for climatic drought in karst areas
Authors:Guo Xiao-jiao  Wang Wen-zhong  Li Cheng-xi  Wang Wei  Shi Jian-sheng  Miao Ying  Hao Xing-bo  Yuan Dao-xian
Abstract:Variations in reference evapotranspiration (ET0) and drought characteristics play a key role in the effect of climate change on water cycle and associated ecohydrological patterns. The accurate estimation of ET0 is still a challenge due to the lack of meteorological data and the heterogeneity of hydrological system. Although there is an increasing trend in extreme drought events with global climate change, the relationship between ET0 and aridity index in karst areas has been poorly studied. In this study, we used the Penman–Monteith method based on a long time series of meteorological data from 1951 to 2015 to calculate ET0 in a typical karst area, Guilin, Southwest China. The temporal variations in climate variables, ET0 and aridity index (AI) were analyzed with the Mann–Kendall trend test and linear regression to determine the climatic characteristics, associated controlling factors of ET0 variations, and further to estimate the relationship between ET0 and AI. We found that the mean, maximum and minimum temperatures had increased significantly during the 65-year study period, while sunshine duration, wind speed and relative humidity exhibited significant decreasing trends. The annual ET0 showed a significant decreasing trend at the rate of ?8.02 mm/10a. However, significant increase in air temperature should have contributed to the enhancement of ET0, indicating an “evaporation paradox”. In comparison, AI showed a slightly declining trend of ?0.0005/a during 1951–2015. The change in sunshine duration was the major factor causing the decrease in ET0, followed by wind speed. AI had a higher correlation with precipitation amount, indicating that the variations of AI was more dependent on precipitation, but not substantially dependent on the ET0. Although AI was not directly related to ET0, ET0 had a major contribution to seasonal AI changes. The seasonal variations of ET0 played a critical role in dryness/wetness changes to regulate water and energy supply, which can lead to seasonal droughts or water shortages in karst areas. Overall, these findings provide an important reference for the management of agricultural production and water resources, and have an important implication for drought in karst regions of China.
Keywords:Reference evapotranspiration   Aridity index   Penman–Monteith method   Sunshine duration   Guilin
点击此处可从《地下水科学与工程》浏览原始摘要信息
点击此处可从《地下水科学与工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号