首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Volatile-induced magma differentiation in the plumbing system of Mt. Etna volcano (Italy): evidence from glass in tephra of the 2001 eruption
Authors:Carmelo Ferlito  Marco Viccaro  Renato Cristofolini
Institution:(1) Dipartimento di Scienze Geologiche, Università degli Studi di Catania, Corso Italia 57, 95129 Catania, Italy
Abstract:Mount Etna volcano was shaken during the summer 2001 by one of the most singular eruptive episodes of the last centuries. For about 3 weeks, several eruptive fractures developed, emitting lava flows and tephra that significantly modified the landscape of the southern flank of the volcano. This event stimulated the attention of the scientific community especially for the simultaneous emission of petrologically distinct magmas, recognized as coming from different segments of the plumbing system. A stratigraphically controlled sampling of tephra layers was performed at the most active vents of the eruption, in particular at the 2,100 m (CAL) and at the 2,550 m (LAG) scoria cones. Detailed scanning electron microscope and energy dispersive x-ray spectrometer (SEM-EDS) analyses performed on glasses found in tephra and comparison with lava whole rock compositions indicate an anomalous increase in Ti, Fe, P, and particularly of K and Cl in the upper layers of the LAG sequence. Mass balance and thermodynamic calculations have shown that this enrichment cannot be accounted for by “classical” differentiation processes, such as crystal fractionation and magma mixing. The analysis of petrological features of the magmas involved in the event, integrated with the volcanological evolution, has evidenced the role played by volatiles in controlling the magmatic evolution within the crustal portion of the plumbing system. Volatiles, constituted of H2O, CO2, and Cl-complexes, originated from a deeply seated magma body (DBM). Their upward migration occurred through a fracture network possibly developed by the seismic swarms during the period preceding the event. In the upper portion of the plumbing system, a shallower residing magma body (ABT) had chemical and physical conditions to receive migrating volatiles, which hence dissolved the mobilized elements producing the observed selective enrichment. This volatile-induced differentiation involved exclusively the lowest erupted portion of the ABT magma due to the low velocity of volatiles diffusion within a crystallizing magma body and/or to the short time between volatiles migration and the onset of the eruption. Furthermore, the increased amount of volatiles in this level of the chamber strongly affected the eruptive behavior. In fact, the emission of these products at the LAG vent, towards the end of the eruption, modified the eruptive style from classical strombolian to strongly explosive.
Keywords:Mount Etna  2001 eruption  Tephra  Residual glass  Alkali enrichment  Volatile-induced differentiation  Chlorine
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号