首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Impact and explosion crater ejecta,fragment size,and velocity
Authors:John D O&#x;Keefe  Thomas J Ahrens
Institution:Seismological Laboratory, California Institute of Technology, Pasadena, California 91125, USA
Abstract:A model was developed for the mass distribution of fragments that are ejected at a given velocity for impact and explosion craters. The model is semiempirical in nature and is derived from (1) numerical calculations of cratering and the resultant mass versus ejection velocity, (2) observed ejecta blanket particle size distributions, (3) an empirical relationships between maximum ejecta fragment size and crater diameter, (4) measurements of maximum ejecta size versus ejecta velocity, and (5) an assumption on the functional form for the distribution of fragments ejected at a given velocity. This model implies that for planetary impacts into competent rock, the distribution of fragments ejected at a given velocity is broad; e.g., 68% of the mass of the ejecta at a given velocity contains fragments having a mass less than 0.1 times a mass of the largest fragment moving at that velocity. Using this model, we have calculated the largest fragment that can be ejected from asteroids, the Moon, Mars, and Earth as a function of crater diameter. The model is unfortunately dependent on the size-dependent ejection velocity limit for which only limited data are presently available from photography of high explosive-induced rock ejecta. Upon formation of a 50-km-diameter crater on an atmosphereless planet having the planetary gravity and radius of the Moon, Mars, and Earth, fragments having a maximum mean diameter of ≈30, 22, and 17 m could be launched to escape velocity in the ejecta cloud. In addition, we have calculated the internal energy of ejecta versus ejecta velocity. The internal energy of fragments having velocities exceeding the escape velocity of the moon (~2.4 km/sec) will exceed the energy required for incipient melting for solid silicates and thus, the fragments ejected from Mars and the Earth would be melted.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号