首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Influence of heterogeneity on 3D slope reliability and failure consequence
Institution:1. School of Civil Engineering, Qingdao Technological University, Qingdao, PR China;2. Department of Civil and Architectural Engineering, Shenzhen Research Institute, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong;3. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 8 Donghu South Road, Wuhan, PR China
Abstract:This paper investigates the influence of heterogeneity of undrained shear strength on the reliability of, and risk posed by, a long slope cut in clay, for different depths of foundation layer. The clay has been idealised as a linear elastic, perfectly plastic Von Mises material and its spatial variability has been modelled using random field theory, whereas slope performance has been computed using a parallel 3D finite element program. The results of Monte Carlo simulations confirm previous findings that three categories of failure mode are possible and that these are significantly influenced by the horizontal scale of fluctuation relative to the slope geometry. In particular, discrete 3D failures are likely for intermediate scales of fluctuation and, in this case, reliability is a function of slope length. The risk posed by potential slides has been quantified in terms of slide volumes and slide lengths, which have been estimated by considering the computed out-of-face displacements. The results show that, for a given horizontal scale of fluctuation relative to the slope geometry, there is a wide range of possible slide volumes and slide geometries. Indeed, the results highlight just how difficult it is to compute a 2D slope failure in a heterogeneous soil. However, they also indicate that, for low probabilities of failure, the volumes of potential slides can be small. This suggests that, for some problems, it may not be necessary to design to very small probabilities of failure, due to the reduced consequence of failure in this case. The techniques developed in this paper will be important in benchmarking simpler 2D and 3D solutions used in design, as there is a need to quantify slide geometries when benchmarking simpler methods based on predefined failure mechanisms.
Keywords:Failure consequence  Finite elements  Heterogeneity  Monte Carlo  Reliability  Risk  Slope stability  Stochastic analysis
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号