首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Scale dependent dynamic capillary pressure effect for two-phase flow in porous media
Institution:Chemical Engineering Department, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom
Abstract:Causes and effects of non-uniqueness in capillary pressure and saturation (PcS) relationship in porous media are of considerable concern to researchers of two-phase flow. In particular, a significant amounts of discussion have been generated regarding a parameter termed as dynamic coefficient (τ) which has been proposed for inclusion in the functional dependence of PcS relationship to quantify dynamic Pc and its relation with time derivative of saturation. While the dependence of the coefficient on fluid and porous media properties is less controversial, its relation to domain scale appears to be dependent on artefacts of experiments, mathematical models and the intra-domain averaging techniques. In an attempt to establish the reality of the scale dependency of the τS relationships, we carry out a series of well-defined laboratory experiments to determine τS relationships using three different sizes of cylindrical porous domains of silica sand. In this paper, we present our findings on the scale dependence of τ and its relation to high viscosity ratio (μr) silicone oil–water system, where μr is defined as the viscosity of non-wetting phase over that of the wetting phase. An order of magnitude increase in the value of τ was observed across various μr and domain scales. Also, an order of magnitude increase in τ is observed when τ at the top and the bottom sections in a domain are compared. Viscosity ratio and domain scales are found to have similar effects on the trend in τS relationship. We carry out a dimensional analysis of τ which shows how different variables, e.g., dimensionless τ and dimensionless domain volume (scale), may be correlated and provides a means to determine the influences of relevant variables on τ. A scaling relationship for τ was derived from the dimensionless analysis which was then validated against independent literature data. This showed that the τ–S relationships obtained from the literature and the scaling relationship match reasonably well.
Keywords:Viscosity ratio  Dynamic capillary pressure effect  Domain scale  Capillary pressure  Buckingham’s π theorem
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号