首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The interaction of manganese(II) with the surface of calcite in dilute solutions and seawater
Authors:Martin L Franklin  John W Morse
Abstract:The interaction of Mn2+ with the surface of calcite in aqueous solutions is complex. In dilute solutions the Mn2+ is rapidly absorbed, MnCO33 nucleates on the calcite surface and then grows by a first order reaction with respect to the initial Mn2+ concentration. At higher ionic strengths in NaCl solutions, the rate of these processes is slower, but the same general pattern persists. In solutions containing Mg2+, at the concentration of seawater and in seawater, the nucleation phase of the uptake process does not appear to occur. The long-term uptake rate of Mn2+ on the surface of calcite in seawater is first order with respect to the dissolved Mn2+ concentration. The rate constant is over three orders of magnitude smaller than that found in dilute Mg2+-free solutions. A probable explanation for the slower growth rate in seawater is that MnCO3 is not nucleated on the calcite surface due to the presence of high Mg2+ concentrations. The Mg2+, through site competition, prevents enough Mn2+ from being adsorbed to reach a critical concentration for MnCO3 nucleation. This behavior is similar to that found for orthophosphate with calcite surfaces in dilute solutions and seawater. It indicates that rhodochrosite cannot nucleate in carbonate-rich recent sediments unless the Mg2+ concentration is lowered below that of seawater.Measurements of the solubility of rhodochrosite in seawater gave results from an undersaturation approach to equilibrium in excellent agreement with those found in previous studies in dilute solutions. When equilibrium was approached from supersaturation, approximately fifty times more calcium was precipitated than Mn2+. The measured solubility was over twice that determined from undersaturation. It is possible that a Mn—calcite containing 25 to 30 mol% MnCO3 formed on the rhodochrosite from the supersaturated solutions. Consequently, it is doubtful that pure rhodochrosite controls the concentration of Mn2+ even in calcium carbonate-poor marine environments.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号