首页 | 本学科首页   官方微博 | 高级检索  
     

基于融合GMM与SVM的船载非侵入式负荷识别方法
引用本文:贾东宁. 基于融合GMM与SVM的船载非侵入式负荷识别方法[J]. 中国海洋大学学报(自然科学版), 2022, 52(1): 129-133. DOI: 10.16441/j.cnki.hdxb.20190103
作者姓名:贾东宁
作者单位:中国海洋大学信息科学与工程学院,山东 青岛 266100;青岛海洋科学与技术试点国家实验室,山东 青岛 266237
基金项目:中国国际科技合作专项项目(2015DFR10490);青岛海洋科学与技术鳌山科学技术创新工程国家实验室项目(2016askj07-4)资助。
摘    要:为保障安全的船载用电环境,实现合理的用电配置与管理,在船载电力布局中引入非侵入式电力负荷监测。提出了一种融合高斯混合模型(GMM)与支持向量机(SVM)的电器类型识别算法。该方法利用暂态事件检测所提取的有效负荷特征,建立具有较好统计分布能力的GMM模型和具有较好泛化能力的SVM模型。对两种算法的概率分布进行融合生成最终识别结果。实验结果表明,相对单独应用SVM模型,本文所用方法在准确率和稳定性方面均有一定程度的提升,且实现复杂度低,具有良好的实用价值。

关 键 词:船载非侵入式负荷监测  支持向量机  高斯混合模型  负荷特征  负荷识别

Shipborne Non-Intrusive Load Identification Method Based on Hybrid GMM/SVM
Jia Dongning. Shipborne Non-Intrusive Load Identification Method Based on Hybrid GMM/SVM[J]. Periodical of Ocean University of China, 2022, 52(1): 129-133. DOI: 10.16441/j.cnki.hdxb.20190103
Authors:Jia Dongning
Affiliation:(College of Information Science and Engineering, Ocean University of China, Qingdao 266100, China;Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China)
Abstract:In order to ensure a safe shipboard electricity environment and realize reasonable electricity allocation and management,non-invasive power load monitoring is introduced into shipboard electricity distribution.An electrical type recognition algorithm based on Gaussian mixture model(GMM)and support vector machine(SVM)is proposed.This method utilizes the effective load features extracted from transient event detection to build GMM model with good statistical distribution ability and SVM model with good generalization ability.Finally,the probability distributions of the two algorithms are fused to generate the final recognition results.The experimental results show that the accuracy and stability of the method in this paper are improved to some extent,and the implementation complexity is low,which has good practical value.
Keywords:shipborne non-intrusive load monitoring  support vector machine  gaussian mixture model  load feature  load identification
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号