High resolution lunar radar map at 7.5 meter wavelength |
| |
Authors: | Thomas W. Thompson |
| |
Affiliation: | Planetary Science Institute, 283 South Lake Avenue, Suite 218, Pasadena, California 91101, USA |
| |
Abstract: | A high-resolution map of lunar radar reflectivity has been obtained using delay-Doppler interferometry techniques and the 7.5 m (40 Mhz) radar at the Arecibo Observatory in Arecibo, Puerto Rico. This new mapping, an extension of an earlier experiment, demonstrated an improvement of surface resolution to 25–40 km. The new map shows scattering behavior similar to other radar maps at 3.8 and 70 cm wavelengths. The maria backscatter less power than the terrae by factors of one-half to one-fourth, although a few terrae areas have the same low back-scatterer as the mare. The large young rayed craters like Tycho have backscatterer enhancement (over the environs) by about 1.5:1, a smaller difference than that observed at centimeter wavelengths. In addition, the mean scattering behavior of the Moon was measured for a range of angles from 10° to 67° and the new measurements differ little from previous measurements at 6 m wavelength. The radar map and mean backscatter data indicate that: (1) the average radar backscatter at 7.5 m wavelength for the large angles of incidence differs little from scatter at centimeter wavelengths; (2) the maria and terrae have a qualitatively similar scattering behavior although maria backscatter less power by factors of one-half to one quater; and (3) the large rayed craters show relatively small enhancements compared with enhancements at meter and centimeter wavelengths. Several different physical properties of the lunar surface could account for these results. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|