首页 | 本学科首页   官方微博 | 高级检索  
     


Very Large Eddy Simulation of Cavitation from Inception to Sheet/Cloud Regimes by A Multiscale Model
Authors:LI Lin-min  WANG Zheng-dong  LI Xiao-jun  WANG Yan-ping  ZHU Zu-chao
Abstract:The cavitating flow in different regimes has the intricate flow structure with multiple time and space scales. The present work develops a multiscale model by coupling the volume of fluid(VOF) method and a discrete bubble model(DBM), to simulate the cavitating flow in a convergent-divergent test section. The Schnerr-Sauer cavitation model is used to calculate the mass transfer rate to obtain the macroscale phase structure, and the simplified Rayleigh-Plesset equation is applied to simulate the growing and collapsing of discrete bubbles. An algorithm for bridging between the macroscale cavities and microscale bubbles is also developed to achieve the multiscale simulation. For the flow field, the very large eddy simulation(VLES) approach is applied. Conditions from inception to sheet/cloud cavitation regimes are taken into account and simulations are conducted. Compared with the experimental observations, it is shown that the cavitation inception, bubble clouds formation and glass cavity generation are all well represented, indicating that the proposed VOF-DBM model is a promising approach to accurately and comprehensively reveal the multiscale phase field induced by cavitation.
Keywords:
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号