首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度学习的人群活动流量时空预测模型
引用本文:李静,刘海砚,郭文月,陈欣. 基于深度学习的人群活动流量时空预测模型[J]. 测绘学报, 2021, 50(4): 522-531
作者姓名:李静  刘海砚  郭文月  陈欣
作者单位:信息工程大学数据与目标工程学院,河南 郑州 450052;信息工程大学地理空间信息学院,河南郑州 450052
基金项目:国家自然科学基金;河南省自然基金
摘    要:传统的时空预测方法缺乏对复杂时空非线性关系的描述,且难以顾及空间多尺度特征对于预测结果的影响.针对这一问题,本文提出了一种融合空间多尺度特征的时空网络模型(MST-Net),将流量预测的回归问题转换为具有时空特性的判别模型.首先,通过并联卷积提取空间多尺度特征;然后,通过引入注意力机制的门控循环单元提取时间特征;最后,...

关 键 词:空间多尺度  时空网络  时空预测  并联卷积  门控循环单元

A spatio-temporal network for human activity prediction based on deep learning
LI Jing,LIU Haiyan,GUO Wenyue,CHEN Xin. A spatio-temporal network for human activity prediction based on deep learning[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(4): 522-531
Authors:LI Jing  LIU Haiyan  GUO Wenyue  CHEN Xin
Affiliation:(Institute of Data and Target Engineering, Information Engineering University, Zhengzhou 450052, China;Institute of Surveying and Mapping, Information Engineering University, Zhengzhou 450052, China)
Abstract:The traditional spatio-temporal prediction methods could hardly model the complex nonlinear relationship of spatio-temporal phenomenons,thus they lack the ability to consider the influence of spatial multi-scale characteristics into the prediction results.In order to overcome this deficiency,a novel model of space-time network(MST-Net)is proposed in this paper,which transforms the regression problem of volume prediction into a discriminant model with time-space characteristics.The spatial and temporal characteristics of spatio-temporal data are extracted by multi-scale parallel convolution and gate recurrent unit respectively.Thus the extracted features are fused with the attention mechanism introduced to capture the long-term features.Finally,the prediction results can be obtained by using the full connection layers.In order to prove the reliability and validity of the model,the model is tested on two challenging social media sign-in datasets.The results indicate that the proposed model outperformed other algorithms in two prediction results evaluation indexes,namely the root mean square errors(RMSE)and mean absolute percentage errors(MAPE),which illustrate that the proposed method could achieve higher prediction accuracy and could better fit the nonlinear relationship of the space-time problem.The proposed model is suitable to predict the flow of human activities.
Keywords:spatial multiscale  spatio-temporal network  spatio-temporal prediction  parallel convolution  gate recurrent unit
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号