首页 | 本学科首页   官方微博 | 高级检索  
     

融合随机森林和超像素分割的建筑物自动提取
引用本文:陈利燕,林鸿,吴健华. 融合随机森林和超像素分割的建筑物自动提取[J]. 测绘通报, 2021, 0(2): 49-53. DOI: 10.13474/j.cnki.11-2246.2021.0042
作者姓名:陈利燕  林鸿  吴健华
作者单位:广州市城市规划勘测设计研究院, 广东 广州 510060
基金项目:广州市科技计划;广州市博士后启动基金;住建部科技计划;广州市工信委信息化项目
摘    要:建筑物是城市空间的重要部分,建筑物信息的提取对基础地理空间数据库更新、城市规划、城市动态监测等具有重要意义.基于遥感影像数据提取建筑物信息具有非常广泛的应用,本文提出了一种基于随机森林和超像素分割算法,并从机载激光点云和数字航空影像数据中自动提取建筑物的方法.试验选取广州市海珠区某处为研究区域,结果表明:在一般的城市区...

关 键 词:建筑物提取  高分辨率遥感影像  激光雷达点云  随机森林  超像素分割
收稿时间:2020-03-04

Building extraction based on random forest and superpixel segmentation
CHEN Liyan,LIN Hong,WU Jianhua. Building extraction based on random forest and superpixel segmentation[J]. Bulletin of Surveying and Mapping, 2021, 0(2): 49-53. DOI: 10.13474/j.cnki.11-2246.2021.0042
Authors:CHEN Liyan  LIN Hong  WU Jianhua
Affiliation:Guangzhou Urban Planning & Design Survey Research Institute, Guangzhou 510060, China
Abstract:Buildings are an important part of urban space.The extraction of building information is of great significance for basic geospatial database updates,urban planning,urban dynamic monitoring.Building information extraction based on remote sensing images data has a very wide range of applications.This study proposes a method based on random forest and super pixel segmentation algorithm,and automatically extracting buildings from airborne laser point cloud and digital aerial image data.The experiment selects a certain area in Haizhu district,Guangzhou as the research area.The results show that:In a general urban area,more than 90%of buildings can be extracted accurately and quickly,with an average accuracy and completeness of about 90%.The method proposed in this paper has a good application prospect.
Keywords:building boundary extraction  high-resolution optical images  LiDAR  random forest  superpixel segmentation
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《测绘通报》浏览原始摘要信息
点击此处可从《测绘通报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号