首页 | 本学科首页   官方微博 | 高级检索  
     

基于众源轨迹数据的行人路网提取
引用本文:郑恬静,黄金彩,周宝定,张德津. 基于众源轨迹数据的行人路网提取[J]. 测绘通报, 2021, 0(3): 69-74. DOI: 10.13474/j.cnki.11-2246.2021.0080
作者姓名:郑恬静  黄金彩  周宝定  张德津
作者单位:深圳大学土木与交通工程学院,广东 深圳518060;深圳大学城市智慧交通与安全运维研究院,广东 深圳518060;深圳大学广东省城市空间信息工程重点实验室,广东 深圳518060;深圳大学土木与交通工程学院,广东 深圳518060;深圳大学广东省城市空间信息工程重点实验室,广东 深圳518060;深圳大学广东省城市空间信息工程重点实验室,广东 深圳518060;深圳大学建筑与城市规划学院,广东 深圳518060
基金项目:国家自然科学基金(41701519);深圳市科技计划(JCYJ20180305125058727);广东省基础与应用基础研究基金(2019A1515011910);深圳市孔雀团队项目(KQTD20180412181337494);国家重点研发计划(2019YFB2102703)。
摘    要:目前,导航位置服务应用提供的路线大多基于机动车道路网数据,难以满足行人导航的需求,有无完备的行人道路网络成为制约行人导航应用的重要因素,因此,本文提出了一种基于莫尔斯理论的行人路网提取方法.首先对轨迹进行预处理,清除轨迹数据中的冗余和噪声,并对原始轨迹进行合理分割,形成清晰的轨迹集合;然后利用莫尔斯理论,对步行轨迹密度...

关 键 词:道路提取  步行轨迹  轨迹预处理  行人路网  莫尔斯理论
收稿时间:2020-05-25

Pedestrian road network extraction based on crowdsourcing trajectory data
ZHENG Tianjing,HUANG Jincai,ZHOU Baoding,ZHANG Dejin. Pedestrian road network extraction based on crowdsourcing trajectory data[J]. Bulletin of Surveying and Mapping, 2021, 0(3): 69-74. DOI: 10.13474/j.cnki.11-2246.2021.0080
Authors:ZHENG Tianjing  HUANG Jincai  ZHOU Baoding  ZHANG Dejin
Affiliation:1. College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China;2. Institute of Urban Smart Transportation & Safety Maintenance, Shenzhen University, Shenzhen 518060, China;3. Guangdong Key Laboratory of Urban Informatics, Shenzhen University, Shenzhen 518060, China;4. College of Architecture and Urban Planning, Shenzhen University, Shenzhen 518060, China
Abstract:At present,the routes provided by the navigation location service application are mostly based on the data of the vehicle road network,which is difficult to meet the needs of pedestrian navigation. The complete pedestrian network has become an important factor restricting the application of pedestrian navigation. Therefore,this paper proposes a pedestrian network extraction method based on Morse theory. First,the trajectory is preprocessed to remove redundancy and noise in the trajectory data,and the original trajectory is divided reasonably to form a clear trajectory set. Secondly,Morse theory is used to extract the"ridgeline"in the density map of walking track and reconstruct the pedestrian network. The experimental analysis uses the walking GPS track data of Shenzhen university campus to extract the pedestrian network. By qualitative and quantitative comparison of the extracted pedestrian network results with Open Street Map( OSM) data,the effectiveness of the method in this paper is verified. At the same time,compared with the current typical road network extraction methods,the proposed method can extract high quality pedestrian network.
Keywords:road extraction  walking trajectory  trajectory preprocessing  pedestrian network  Morse theory
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《测绘通报》浏览原始摘要信息
点击此处可从《测绘通报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号