首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Geostationary secular dynamics revisited: application to high area-to-mass ratio objects
Authors:Fabien Gachet  Alessandra Celletti  Giuseppe Pucacco  Christos Efthymiopoulos
Institution:1.Department of Mathematics,University of Rome Tor Vergata,Rome,Italy;2.Research Center for Astronomy and Applied Mathematics,Academy of Athens,Athens,Greece;3.Department of Physics,University of Rome Tor Vergata,Rome,Italy
Abstract:The long-term dynamics of the geostationary Earth orbits (GEO) is revisited through the application of canonical perturbation theory. We consider a Hamiltonian model accounting for all major perturbations: geopotential at order and degree two, lunisolar perturbations with a realistic model for the Sun and Moon orbits, and solar radiation pressure. The long-term dynamics of the GEO region has been studied both numerically and analytically, in view of the relevance of such studies to the issue of space debris or to the disposal of GEO satellites. Past studies focused on the orbital evolution of objects around a nominal solution, hereafter called the forced equilibrium solution, which shows a particularly strong dependence on the area-to-mass ratio. Here, we (i) give theoretical estimates for the long-term behavior of such orbits, and (ii) we examine the nature of the forced equilibrium itself. In the lowest approximation, the forced equilibrium implies motion with a constant non-zero average ‘forced eccentricity’, as well as a constant non-zero average inclination, otherwise known in satellite dynamics as the inclination of the invariant ‘Laplace plane’. Using a higher order normal form, we demonstrate that this equilibrium actually represents not a point in phase space, but a trajectory taking place on a lower-dimensional torus. We give analytical expressions for this special trajectory, and we compare our results to those found by numerical orbit propagation. We finally discuss the use of proper elements, i.e., approximate integrals of motion for the GEO orbits.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号