首页 | 本学科首页   官方微博 | 高级检索  
     


The theory of asynchronous relative motion II: universal and regular solutions
Authors:Javier Roa,Jesús Peláez  author-information"  >
Affiliation:1.Space Dynamics Group, Technical University of Madrid (UPM),Madrid,Spain;2.Jet Propulsion Laboratory,California Institute of Technology,Pasadena,USA
Abstract:Two fully regular and universal solutions to the problem of spacecraft relative motion are derived from the Sperling–Burdet (SB) and the Kustaanheimo–Stiefel (KS) regularizations. There are no singularities in the resulting solutions, and their form is not affected by the type of reference orbit (circular, elliptic, parabolic, or hyperbolic). In addition, the solutions to the problem are given in compact tensorial expressions and directly referred to the initial state vector of the leader spacecraft. The SB and KS formulations introduce a fictitious time by means of the Sundman transformation. Because of using an alternative independent variable, the solutions are built based on the theory of asynchronous relative motion. This technique simplifies the required derivations. Closed-form expressions of the partial derivatives of orbital motion with respect to the initial state are provided explicitly. Numerical experiments show that the performance of a given representation of the dynamics depends strongly on the time transformation, whereas it is virtually independent from the choice of variables to parameterize orbital motion. In the circular and elliptic cases, the linear solutions coincide exactly with the results obtained with the Clohessy–Wiltshire and Yamanaka–Ankersen state-transition matrices. Examples of relative orbits about parabolic and hyperbolic reference orbits are also presented. Finally, the theory of asynchronous relative motion provides a simple mechanism to introduce nonlinearities in the solution, improving its accuracy.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号