首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Solar flare track densities in interplanetary dust particles: The determination of an asteroidal versus cometary source of the zodiacal dust cloud
Institution:1. State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China;2. University of Chinese Academy of Sciences, Beijing 100049, China;3. Institute of Geochemistry Chinese Academy of Sciences, Guiyang 550002, China;4. CAS Center for Excellence in Comparative Planetology, Hefei 230026, China;5. School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
Abstract:Dust particles that are larger than 1 μm, when injected into the Solar System from comets and asteroids, will spiral into the Sun due to the Poynting-Robertson effect. During the process of spiraling in, such dust particles accumulate solar flare tracks in their component minerals. The accumulated track density for a given dust grain is a function of the duration of its space exposure and its distance from the Sun. Using a computer model, it was determined that the expected track density distributions from grains produced by comets are very different from those produced by asteroids. Individual asteroids produce populations of particles that arrive at 1 AU with scaled track density distributions containing “spikes,” while comets supply particles with a flatter and wider distribution of track densities. Particles with track densities above 3 × 107 (sϱA/v) tracks/cm2 have probably been exposed to solar flare tracks prior to injection into the interplanetary medium and are therefore likely to be asteroidal. Particles with track densities below 0.7 × 107(sϱA/v) tracks/cm2 must be derived from comets or Earth-crossing asteroids. Earth-crossing asteroids are not responsible for all the dust collected at 1 AU since they cannot produce the large track densities observed in some of the interplanetary dust particles collected in the stratosphere. The track densities observed in the stratospheric dust fall within the predicted range, but there is at present an insufficient number of carefully determined densities to make strong statements about the sources of the present dust population.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号