首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The Fate of High-Angle Dipping Slabs in the Subduction Factory: an Integrated Trace Element and Radiogenic Isotope (U, Th, Sr, Nd, Pb) Study of Stromboli Volcano, Aeolian Arc, Italy
Authors:Tommasini  Simone; Heumann  Arnd; Avanzinelli  Riccardo; Francalanci  Lorella
Institution:1Dipartimento Di Scienze Della Terra, Università Degli Studi Di Firenze, VIA LA PIRA 4, I-50121 Firenze, Italy
2Geowissenschaftliches Zentrum, Universität Göttingen, Abteilung: Geochemie, Goldschmidtstrasse 1, D-37077 Göttingen, Germany
Abstract:The subaerial part of the Stromboli stratovolcano was builtup in the last 100 kyr through six periods of activity; theerupted magmas record the largest compositional variation ofall the Aeolian arc volcanoes (calc-alkaline, shoshonitic, andpotassic alkaline magma series). The trace element characteristicsof the less evolved magmas of each period of activity are coherentlycorrelated with their radiogenic isotope (Sr, Nd, Pb) composition,and are typical of volcanic arc rocks. In terms of U-seriesisotopes, samples from the different magma series have both238U and 230Th excesses, and this distinctive feature providesadditional constraints on source enrichment processes withinthe mantle wedge and on the mechanism of partial melting. Overallthe complete set of data demonstrates that the genesis of thedifferent magma series at Stromboli can be accommodated in amantle source that experienced two distinct enrichment processesby different parts of the subducting oceanic crust of the Ionianslab. The first was caused by supercritical liquids originatingfrom the basaltic and sedimentary parts of the subducting slabat >5 GPa and ~900°C. The second was induced by aqueousfluids, again originating from the basaltic and sedimentaryparts of the slab, released from a shallower part of the subductedIonian slab (< 5 GPa and ~800°C). U–Th disequilibriaconstrain the timing of the first metasomatic event (Stage I:supercritical liquids) at >435 ka, whereas the second event(Stage II: aqueous fluids) occurred at ~100 ka. The high-angledip of the Ionian slab (~70°) caused the superimpositionof the metasomatizing agents of the two enrichment processesin the same volume of the mantle wedge, explaining the occurrenceof such different magma series in a single volcanic edifice.The U–Th disequilibria provide evidence for dynamic meltingof the metasomatized mantle wedge combined with an ageing effectresulting from the restoration of secular equilibrium afterthe perturbation caused by the U-rich aqueous fluids of StageII. The trace element and radiogenic isotope (U, Th, Sr, Nd,Pb) signature of the mantle source of the magmas at Stromboliis thus dependent upon the amount of supercritical liquids andaqueous fluids released by the two components of the subductedslab, whereas the distinctive 238U and 230Th excesses of themagmas result from a combination of mantle ageing and time-dependentdynamic melting. The geochemical and radiogenic isotope signatureof the mantle source beneath Stromboli places important constraintson the isotopic polarity from Southern Latium to the Aeolianarc attributed to the effect of a HIMU mantle component followingeither lateral inflow of foreland mantle material or upwellingof a mantle plume in the centre of the Tyrrhenian basin. Ourgeochemical model demonstrates that the high 206Pb/204Pb ofthe putative ‘HIMU’ mantle component could be equallyformed during metasomatism of the pre-existing mantle wedgeby either the supercritical liquid (Stage I) or aqueous fluid(Stage II) released by the subducted altered basalt of the Ionianplate. KEY WORDS: radiogenic isotopes; U–Th disequilibria; mantle metasomatism; supercritical liquid; aqueous fluid; Stromboli
Keywords:: radiogenic isotopes  U-Th disequilibria  mantle metasomatism  supercritical liquid  aqueous fluid  Stromboli
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号