首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Projecting future sea level
Authors:C J van der Veen
Institution:(1) Institute of Meteorology and Oceanography, Princetonplein 5, 3584 CC Utrecht, The Netherlands;(2) Present address: Byrd Polar Research Center, The Ohio State University, 125 South Oval Mall, 43210 Columbus, OH, USA
Abstract:Through the use of fossil fuels as an energy source, mankind is slowly changing the constitution of the atmosphere. The emission of CO2 and other greenhouse gases changes the radiative properties of the earth/atmosphere system, and as a result climate is expected to become warmer. As a starting point for the sea-level rise scenario discussed here it is assumed that the globally-averaged increase of surface air temperatures will amount to 2 to 4°C in the second half of the next century (i.e. around 2085 AD). One of the consequences of this warming is an accelerated rise in sea level, caused by thermal expansion of ocean water and further retreat of mountain glaciers. The Greenland Ice Sheet will also decrease in size, but on the other hand, Antarctica is expected to grow slightly due to increased snowfall. Taken together, the projection for future sea level presented here suggest that by 2085 AD, global sea-level stand will be 28–66 cm higher than the present level, which implies a rate of sea-level rise of about 2 to 4 times that observed during the last 100 yr. Our scenario does not include a contribution resulting from the possible collapse of the West Antarctic Ice Sheet. If this collapse is indeed likely to occur after the major peripheral ice shelves have thinned considerably, the effects on sea level will be small in the coming 100 yr. First, the oceans surrounding Antarctica must have warmed sufficiently to reduce the winter sea-ice extent to allow circumpolar deep water to penetrate into the sub-shelf cavities, thus increasing basal melt rates on the ice shelves. Of course, on longer time scales, West Antarctica could become the major contributor to rising sea level.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号