首页 | 本学科首页   官方微博 | 高级检索  
     


Mathematical models for petroleum-forming processes: carbon isotope fractionation
Authors:Douglas W Waples  Leonard Tornheim
Affiliation:Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, CO 80401, U.S.A.;Chevron Research Company, Richmond, CA 94802, U.S.A.
Abstract:A mathematical model has been developed in which carbon isotope fractionation during thermal cracking of n-paraffins can be simulated. The model has been calibrated based on data from laboratory cracking experiments carried out on n-octadecane. Relative rate constants for cleavage of C12-C12, C12-C13 and C13-C13 bonds agree with the experimental values obtained by other workers.Application of this model to the process of petroleum formation gives good agreement with some existing experimental data, but suggests that a review of our understanding of isotope fractionation during thermal cracking may be necessary. The relative importance of the degree to which the organic material has been cracked and of the type of the organic material in influencing δC13 values is discussed.The present model predicts that cracking of n-paraffin distributions having initial odd or even carbon number predominances can induce isotopic inhomogeneity among the homologs of the resulting distribution. The model exhibits some deficiencies in explaining or predicting the δC13 values of ethane and propane in relation to methane in gases and of oils and associated methane. Explanations for these discrepancies may lie in the simplicity of our mathematical model, in our assumption of initial isotopic homogeneity within molecules and in our use of only n-paraffins as the source molecules for the cracking reactions.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号