首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The polarization-free approximation applied to multi-level non-LTE radiative transfer
Authors:J H M J Bruls  J Trujillo Bueno
Institution:(1) Instituto de Astrofísica de Canarias, La Laguna, Tenerife, Spain
Abstract:The polarization-free (POF) approximation (Trujillo Bueno and Landi Degl'Innocenti, 1996) is capable of accounting for the approximate influence of the magnetic field on the statistical equilibrium, without actually solving the full Stokes vector radiative transfer equation. The method introduces the Zeeman splitting or broadening of the line absorption profile phgrI in the scalar radiative transfer equation, but the coupling between Stokes I and the other Stokes parameters is neglected. The expected influence of the magnetic field is largest for strongly-split strong lines and the effect is greatly enhanced by gradients in the magnetic field strength. Formally the interaction with the other Stokes parameters may not be neglected for strongly-split strong lines, but it turns out that the error in Stokes I obtained through the POF approximation to a large extent cancels the neglect of interaction with the other Stokes parameters, so that the resulting line source functions and line opacities are more accurate than those obtained with the field-free approach. Although its merits have so far only been tested for a two-level atom, we apply the POF approximation to multi-level non-LTE radiative transfer problems on the premise that there is no essential difference between these two cases. Final verification of its validity in multi-level cases still awaits the completion of a non-LTE Stokes vector transfer code.For two realistic multi-level cases (CaII and MgI in the solar atmosphere) it is demonstrated that the POF method leads to small changes, with respect to the field-free method, in the line source functions and emergent Stokes vector profiles (much smaller than for a two-level atom). Real atoms are dominated by strong ultraviolet lines (only weakly split) and continua, and most lines with large magnetic splitting (in the red and the infrared) are at higher excitation energies, i.e. they are relatively weak and unable to produce significant changes in the statistical equilibrium. We find that it is generally unpredictable by how much the POF results will differ from the field-free results, so that it is nearly always necessary to confirm predictions by actual computations.The POF approximation provides more reliable results than the field-free approximation without significantly complicating the radiative transfer problem, i.e. without solving any extra equations and without excessive computational resource requirements, so that it is to be preferred over the field-free approximation.
Keywords:Line formation  Magnetic fields  Polarization  Radiative transfer  Sun: atmosphere  Sun: magnetic fields
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号