首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Constraints on the origin of mantle-derived low Ca garnets
Authors:Dante Canil  Kejian Wei
Institution:(1) Bayerisches Geoinstitüt, Universität Bayreuth, W-8580 Bayreuth, FRG;(2) C.M. Scarfe Laboratory of Experimental Petrology, Department of Geology, University of Alberta, T6G 2E3 Edmonton, Alberta, Canada
Abstract:Current hypotheses for the source rock of low Ca garnets hosted in mantle-derived diamonds and xenoliths range from residues of komatiite generation, to subducted serpentinite, to subducted mid-ocean ridge (MORB) harzburgite. Experiments designed to test these hypotheses were undertaken. The stability and compositional variation of garnets at pressures above 4 GPa through the melting interval of hydrous peridotite, in the subsolidus of depleted harzburgite and peridotite compositions, and along the liquidus of aluminium-undepleted and aluminium-depleted komatiites were examined, and compared with petrological data for natural low Ca garnets. Partitioning of Cr between garnet and ultramafic liquid along the liquidus of komatiites and within the melting interval of peridotite, indicates that garnets in mantle residues after single stage Archean ultramafic liquid removal would contain 2 to 4 wt% Cr2O3. Thus, the more Cr-poor population of mantle-derived low Ca garnets, with Cr2O3 less than 4 wt%, could have originated by such a process. Experimental results for other compositions indicate that average cratonic peridotite or its hydrated equivalent is typically too Cr-poor to be the protolith from which low Ca garnets containing greater than 4 wt% Cr2O3 could have crystallized in the upper mantle. Experiments on a spinel harzburgite composition indicate that an extremely Cr-rich protolith (Cr/Cr+Al>0.3) is required to crystallize spinel and Cr-rich low Ca garnets, at pressures deduced for the ultramafic inclusion suite in diamonds (5 to 7 GPa). Natural examples of such Cr-rich protoliths are represented in some ophiolite harzburgites. All the experimental data taken together require that low Ca garnets with greater than 4 wt% Cr2O3 originated from residues that underwent multiple melt extraction. Whether such multi-stage events formed protoliths for low Ca garnets at shallow (i.e. MORB source region) or deep (i.e. komatiite source region) levels in the Precambrian mantle is not completely resolvable. The former environment can better account for the abundance of spinel in many diamonds hosting low Ca garnets, but the latter scenario best explains the presence of low Ca garnets in harzburgite xenoliths with lsquocratonicrsquo bulk compositions well removed from typical MORB residues.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号