首页 | 本学科首页   官方微博 | 高级检索  
     检索      


On the temporal resolution of mass balance models for soluble chemicals in soils
Authors:A Pistocchi
Institution:European Commission, DG‐JRC, Institute for Environment and Sustainability, Ispra (VA), Italy
Abstract:A daily step model of chemical mass balance in the topsoil is presented and validated at the three experimental sites in Europe, and subsequently applied to perform two distinct numerical experiments. First, an experiment was run using hypothetic soluble chemicals with half‐lives ranging from 10?1 to 104, with a range of representative European climate and soil properties, assuming uniform constant emissions of the chemicals throughout the year. Chemical mass in soil from the daily step model calculations can be surrogated by the monthly step model consistently parameterized in terms of absolute values, patterns and inter‐monthly variability with decreasing accuracy at higher chemical half‐lives. Leaching fluxes can be also surrogated by the monthly step calculation, although with higher errors. Runoff is correct in the order of magnitude, but it shows only a weak correlation with the monthly mean of the daily model output. For leaching and runoff, the accuracy depends mainly on soil properties. Variability is well reproduced for both leaching and runoff. The second experiment represented a pulse emission of chemicals discharged on a single day in a 12‐month period. Results from the annual average mass of chemicals in the soil, annual runoff and leaching fluxes from the daily step model were compared with the results obtained from the experiment assuming constant‐removal rates for the year. The two values are within a factor of 10 for half‐lives longer than 10 days; therefore, it is possible to emulate the daily step model with a simple constant‐removal rate model for screening‐level assessment. The experiments suggest that simpler schemes may be a practical screening‐level approximation of detailed daily step models for both continuous and pulse emissions, two cases providing extreme bounds of variation to real world emissions. Copyright © 2010 John Wiley & Sons, Ltd.
Keywords:fate and transport modelling  soil  solute
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号