首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Spatiotemporal Variations of Microwave Land Surface Emissivity (MLSE) over China Derived from Four-Year Recalibrated Fengyun 3B MWRI Data
Authors:Rui LI  Jiheng HU  Shengli WU  Peng ZHANG  Husi LETU  Yu WANG  Xuewen WANG  Yuyun FU  Renjun ZHOU  Ling SUN
Abstract:Microwave Land Surface Emissivity (MLSE) over China under both clear and cloudy sky conditions was retrieved using measurements of recalibrated microwave brightness temperatures (Tbs) from Fengyun-3B Microwave Radiation Imager (FY-3B MWRI), combined with cloud properties derived from Himawari-8 Advanced Himawari Imager (AHI) observations. The contributions from cloud particles and atmospheric gases to the upwelling Tbs at the top of atmosphere were calculated and removed in radiative transfer. The MLSEs at horizontal polarizations at 10.65, 18.7, and 36.5 GHz during 7 July 2015 to 30 June 2019 over China showed high values in the southeast vegetated area and low values in the northwest barren, or sparsely vegetated, area. The maximum values were found in the belt area of the Qinling-Taihang Mountains and the eastern edge of the Qinghai-Tibet Plateau, which is highly consistent with MLSEs derived from AMSR-E. It demonstrates that the measurements of FY-3B MWRI Tbs, including its calibration and validation, are reliable, and the retrieval algorithm developed in this study works well. Seasonal variations of MLSE in China are mainly driven by the combined effects of vegetation, rainfall, and snow cover. In tropical and southern forest regions, the seasonal variation of MLSE is small due to the enhancement from vegetation and the suppression from rainfall. In the boreal area, snow causes a significant decrease of MLSE at 36.5 GHz in winter. Meanwhile, the MLSE at lower frequencies experiences less suppression. In the desert region in Xinjiang, increases of MLSEs at all frequencies are observed with increasing snow cover.
Keywords:satellite remote sensing  microwave surface emissivity  Fengyun-3B  MWRI  Himawari-8  AHI
点击此处可从《大气科学进展》浏览原始摘要信息
点击此处可从《大气科学进展》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号