Abstract: | The spring of 2018 was the hottest on record since 1951 over eastern China based on station observations, being 2.5°C higher than the 1961?90 mean and with more than 900 stations reaching the record spring mean temperature. This event exerted serious impacts in the region on agriculture, plant phenology, electricity transmission systems, and human health. In this paper, the contributions of human-induced climate change and anomalous anticyclonic circulation to this event are investigated using the newly homogenized observations and updated Met Office Hadley Centre system for attribution of extreme events, as well as CanESM2 (Second Generation Canadian Earth System Model) simulations. Results indicate that both anthropogenic influences and anomalous anticyclonic circulation played significant roles in increasing the probability of the 2018 hottest spring. Quantitative estimates of the probability ratio show that anthropogenic forcing may have increased the chance of this event by ten-fold, while the anomalous circulation increased it by approximately two-fold. The persistent anomalous anticyclonic circulation located on the north side of China blocked the air with lower temperature from high latitudes into eastern China. Without anthropogenic forcing or without the anomalous circulation in northern China, the occurrence probability of the extreme warm spring is significantly reduced. |