首页 | 本学科首页   官方微博 | 高级检索  
     


Contact metamorphism of impure dolomitic limestone in the Boulder Aureole,Montana
Authors:Jack M. Rice
Affiliation:(1) Department of Geology and Geophysics, Yale University, 06520 New Haven, Connecticut, USA
Abstract:Progressive metamorphism of impure dolomitic limestone in the 1.5 to 2.5 km wide contact aureole surrounding the northernmost portion of the boulder batholith has resulted in a consistent sequence of uniformly distributed zones of low-variance mineral parageneses separated by abrupt and distinctive isograds. In silica-undersaturated, aluminous marbles, the following mineral assemblages occur, in order of increasing grade: calcite-dolomite-calcic amphibole-chlorite, calcite-dolomite-calcic amphibole-chlorite-spinel, calcite-dolomite-calcic amphibole-chlorite-olivine-spinel, calcite-dolomite-chlorite-olivine-spinel, calcite-dolomite-olivine-spinel. The spatial distribution of parageneses and the occurrence of low-variance parageneses indicate buffering of the pore fluid composition by the local mineral assemblages. The observed sequence of mineral reactions and the spacing of isograds is in good agreement with experimental and calculated equilibria in terms of P-T-XCO2and temperatures of equilibration inferred from calcite-dolomite geothermometry, which range from 435 to 607 °C across the aureole.Microprobe analyses of coexisting minerals indicate attainment of exchange equilibrium. Calcic amphibole and chlorite coexisting with calcite and dolomite become progressively more aluminous with increasing grade; calcic amphibole changes rapidly from Al-poor tremolite to pargasite, while AlIV in Cte increases from 2.0 to 2.3 atoms per 8 tetrahedral sites. Observed low-variance assemblages fix the activities of calcic amphibole and chlorite end-member components as a function of P and T, and hence the systematic compositional variation in these phases is not an independent variable, but is controlled by the local mineral assemblage.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号