首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Genesis of the Kamioka Skarn Deposits: An Important Role of Clinopyroxene Skarn and Graphite-bearing Limestone in Precipitating Sulfide Ore
Authors:Yasuhiro KATO
Institution:Department of Earth Sciences, Yamaguchi University, Yamaguchi 753–8512, Japan
Abstract:Abstract: A genetical relationship between skarn formation and mineralization is investigated for the Kamioka skarn deposits which are the largest Zn-Pb producer in Japan. In the Mozumi deposit, one of main deposits in the Kamioka mining area as well as Tochibora and Maruyama, clinopyroxene skarn was generally subjected to later replacement by garnet or magnetite–calcite–quartz during the Zn-Pb mineralization. The replacement of hedenbergitic clinopyroxene by andraditic garnet resulted in the formation of diopsidic clinopyroxene relicts. With the progress of replacement, the S/So value (So: an estimated area occupied by an original clinopyroxene grain in a thin section, S: a total area of relict clinopyroxene fragments) which is an index of the degree of replacement decreases from 0. 7 to 0. 1, and the hedenbergite mole percent of relict clinopyroxene decreases drastically from about 65 to less than 40. A close association of andraditic garnet and sphalerite suggests that heden-bergitic clinopyroxene skarn played an important role to reduce the relatively oxic ore-forming fluid enriched in Zn2+ and SO42– and to precipitate sphalerite from the fluid. Ferrous iron in the hedenbergitic clinopyroxene skarn was oxidized to form andraditic garnet. Besides this garnet formation, the mineral assemblage of magnetite–calcite–quartz replaced the clinopyroxene skarn at the time of mineralization. In both cases, the reduction of relatively oxic ore-forming fluid by hedenbergitic clinopy-roxene skarn at the later stage brought about the precipitation of sulfide minerals. In contrast, these types of later replacement are not found in the Tochibora deposit. Instead, graphite-bearing crystalline limestone and relatively fresh clinopyroxene skarn are common. Mineralized clinopyroxene skarn has high graphite carbon contents relative to barren one, suggesting that the amount of graphite in the skarn was an important controlling factor for mineralization. It is very likely that the graphite played a role of reducing agent during the mineralization in the Tochibora deposit.
Keywords:skarn deposits  Zn–Pb mineralization  clinopyroxene skarn  garnet skarn  graphite  reducing agent  
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号