首页 | 本学科首页   官方微博 | 高级检索  
     检索      


New observing modes of a future HTN‐based distributed detection network for high time resolution and quantum optical astrophysics experiments
Authors:N Solomos
Abstract:This contribution aims to introduce the idea that a well‐evolved HTN of the far future, with the anticipated addition of very large apertures, could also be made to incorporate the ability to carry out photonic astronomy observations, particularly Optical VLBI in a revived Hanbury‐Brown and Twiss Intensity Interferometry (HBTII) configuration. Such an HTN could exploit its inherent rapid reconfigurational ability to become a multi‐aperture distributed photon‐counting network able to study higher‐order spatiotemporal photon correlations and provide a unique tool for direct diagnostics of astrophysical emission processes. We very briefly review various considerations associated with the switching of the HTN to a special mode in which single‐photon detection events are continuously captured for a posteriori intercorrelation. In this context, photon arrival times should be determined to the highest time resolution possible and extremely demanding absolute time keeping and absolute time distribution schemes should be devised and implemented in the HTN nodes involved. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
Keywords:methods: data analysis  methods: observational
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号