首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Influence of water-extractable organic matter from Opalinus Clay on the sorption and speciation of Ni(II), Eu(III) and Th(IV)
Institution:1. BRGM, 3 Avenue C. Guillemin, BP 36009, 45060 Orléans, France;2. Andra, 1-7 rue Jean-Monnet, 92298 Châtenay-Malabry, France;3. IMMM, UMR CNRS 6283, Université du Maine, Avenue Olivier Messiaen, 72085 Le Mans, France
Abstract:The influence of water-extractable organic matter from 6 Opalinus Clay (OPA) samples from Mont Terri and Benken (Switzerland) on the sorption of Ni(II), Eu(III) and Th(IV) has been measured using an ion exchange technique. OPA is considered to be one of the potential host rocks for the deep geological disposal of high-level and long-lived intermediate-level radioactive waste in Switzerland. Within the range of estimated uncertainties, no significant differences in sorption were observed in most cases as compared with suitable synthetic waters devoid of organic C. Only in certain individual cases were slight reductions in sorption (less than a factor of 5) for Eu(III) and Ni(II) found. The results of accompanying laser fluorescence spectroscopy experiments did not show any influence of the extracts on Cm(III) speciation. This would suggest that the reduction of sorption occasionally observed in the ion exchange experiments is probably not caused by the formation of complexes between the radionuclides and the organic matter in the extracts, but is rather due to an underestimation of systematic uncertainties. From these findings, and from UV–VIS spectroscopic characterisation of the organic matter in the extracts, it can be concluded that only a negligible fraction of the organic matter present may be in the form of humic or fulvic acids. It is consequently justified to put aside overly conservative assumptions with respect to the complexing behaviour of the organic matter used towards the metal ions investigated and their chemical analogues. In view of the site-specific character of the present study, these conclusions may not be arbitrarily applied to other geological formations considered as possible host rocks for the disposal of radioactive waste.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号