首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Late Paleozoic subduction system in the northern margin of the Alxa block,Altaids: Geochronological and geochemical evidences from ophiolites
Institution:1. State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong 510640, China;2. State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;3. CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China;4. Department of Applied Geology, Curtin University, Perth, WA 6845, Australia;5. School of Geosciences, The University of Sydney, NSW 2006, Australia;6. State Key Laboratory of Geological Processes and Mineral Resources, Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074, China;1. State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong 510640, China;2. State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
Abstract:The northern margin of the Alxa block (NMAB), located in the southernmost part of the Altaids, is important for understanding the tectonic processes associated with the closure of the Paleo-Asian ocean. In this study, we report results from our studies on two ophiolitic belts (the Enger Us and Quagan Qulu ophiolitic belts) to constrain the tectonic evolution of the Altaids. The tectonic blocks in the Enger Us ophiolite are mainly composed of ultramafic and mafic rocks, with a matrix comprising highly deformed Carboniferous clastic rocks and tuffs. Zircons from a pillow lava sample yielded SHRIMP zircon U–Pb age of 302 ± 14 Ma. Massive and pillow basalts in the Enger Us ophiolite exhibit N-MORB geochemical affinities, displaying high TiO2 and low K2O contents with tholeiitic signatures. They are characterized by depletion of light rare earth elements (LREEs) without fractionation of high field strength elements (HFSEs) and negative Nb–Ta anomalies. It is inferred that the magmas of these rocks were derived from a depleted mantle source in a mid-ocean ridge setting. The Quagan Qulu ophiolite is composed of tectonic blocks, including ultramafic, gabbros and siliceous rocks, and matrix, including deformed clastic rocks and limestones. Zircons in a gabbro sample from the Quagan Qulu ophiolite yielded SHRIMP zircon U–Pb age of 275 ± 3 Ma. The gabbros show high MgO contents, compatible elements (Ni, Co, Sc, and V), and Al2O3/TiO2 ratios, but low TiO2 and SiO2 contents. They are enriched in large-ion lithophile elements (LILEs) and depleted in LREEs and HFSEs, indicating that they were derived from an extremely depleted mantle source which was infiltrated by a subduction-derived fluid or melt. Our geochemical data suggest that gabbros in the Quagan Qulu ophiolite were formed in a back-arc basin setting. A synthesis of evidence from geochemistry, regional geology, and paleobiogeography support the notion that the Enger Us ophiolitic belt represents the major suture of the Paleo-Asian Ocean in the NMAB and the Quagan Qulu ophiolitic belt represents a back-arc basin. These two ophiolitic belts, together with the Zongnaishan–Shalazhashan arc have been suggested to be a late Paleozoic ocean-arc–back-arc basin system in the southernmost part of the Altaids. The geochronological data suggest that the subduction process occurred even in the early Permian, indicating that the final closure of the Paleo-Asian Ocean might have taken place later than the early Permian.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号