首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Prediction of topsoil properties at field-scale by using C-band SAR data
Institution:1. Departamento de Agronomía, Universidad Nacional del Sur (UNS), San Andrés 800, Bahía Blanca, 8000, Buenos Aires, Argentina;2. CERZOS, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina;3. Instituto Nacional de Tecnología Agropecuaria INTA, EEA Balcarce, Ruta 226, Km 73.5, Balcarce, Argentina;4. Agronomy Program, Colombian Sugarcane Research Center (Cenicaña), Experimental Station via Cali-Florida, Km 26, Colombia
Abstract:Designing and validating digital soil mapping (DSM) techniques can facilitate precision agriculture implementation. This study generates and validates a technique for the spatial prediction of soil properties based on C-band radar data. To this end, (i) we focused on working at farm-field scale and conditions, a fact scarcely reported; (ii) we validated the usefulness of Random Forest regression (RF) to predict soil properties based on C-band radar data; (iii) we validated the prediction accuracy of C-band radar data according to the coverage condition (for example: crop or fallow); and (iv) we aimed to find spatial relationship between soil apparent electrical conductivity and C-band radar. The experiment was conducted on two agricultural fields in the southern Argentine Pampas. Fifty one Sentinel 1 Level-1 GRD (Grid) products of C-band frequency (5.36 GHz) were processed. VH and VV polarizations and the dual polarization SAR vegetation index (DPSVI) were estimated. Soil information was obtained through regular-grid sample scheme and apparent soil electrical conductivity (ECa) measurements. Soil properties predicted were: texture, effective soil depth, ECa at 0-0.3m depth and ECa at 0-0.9m depth. The effect of water, vegetation and soil on the depolarization from SAR backscattering was analyzed. Complementary, spatial predictions of all soil properties from ordinary cokriging and Conditioned Latin hypercube sampling (cLHS) were evaluated using six different soil sample sizes: 20, 40, 60, 80, 100 and the total of the grid sampling scheme. The results demonstrate that the prediction accuracy of C-band SAR data for most of the soil properties evaluated varies considerably and is closely dependent on the coverage type and weather dynamics. The polarizations with high prediction accuracy of all soil properties showed low values of σVVo and σVHo, while those with low prediction accuracy showed high values of σVVo and low values of σVHo. The spatial patterns among maps of all soil properties using all samples and all sample sizes were similar. In conditions when summer crops demand large amount of water and there is soil water deficit backscattering showed higher prediction accuracy for most soil properties. During the fallow season, the prediction accuracy decreased and the spatial prediction accuracy was closely dependent on the number of validation samples. The findings of this study corroborates that DSM techniques at field scale can be achieved by using C-band SAR data. Extrapolation y applicability of this study to other areas remain to be tested.
Keywords:Digital soil mapping  Sentinel 1  Random Forest  Precision agriculture  Soil apparent electrical conductivity  Radar Remote Sensing  Conditioned Latin hypercube sampling
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号